We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Children with congenital heart disease (CHD) are at risk for psychological challenges, including internalising (e.g., depression, anxiety) and externalising (e.g., aggression, inattention) problems. The present study aimed to investigate the development of psychological concerns in early childhood by identifying predictors of behavioural and emotional problems in toddlers with CHD.
Methods:
Children with CHD who were seen for neurodevelopmental (ND) evaluation at 12 ± 3 months of age, who completed the Bayley Scales of Infant Development–III (BSID-III) and whose parents completed the Child Behavior Checklist (CBCL), a standardised measure of emotional/behavioural problems at age 24–36 months, were included in the study (n = 144). CBCL scores were compared to test norms and classified as normal or abnormal. A classification tree was used to assess the association between CBCL scores and demographic and clinical variables.
Results:
Multi-variable tree analyses revealed lower BSID-III language composite scores at age 9–15 months predicted clinical CBCL internalising (p < 0.001), externalising (p = 0.004) and total scores (p < 0.001) at age 24–36 months. Lower maternal education levels also predicted clinical CBCL internalising (p < 0.0001), externalising (p < 0.001) and total scores (p < 0.0001).
Conclusions:
Lower language abilities and lower maternal education predict increased behavioural and emotional problems in toddlers with CHD. These risk factors should be considered during routine ND evaluations to allow for earlier identification of children with CHD and their families who may benefit from psychological support.
Infants with single ventricle physiology have arterial oxygen saturations between 75 and 85%. Home monitoring with daily pulse oximetry is associated with improved interstage survival. They are typically sent home with expensive, bulky, hospital-grade pulse oximeters. This study evaluates the accuracy of both the currently used Masimo LNCS and a relatively inexpensive, portable, and equipped with Bluetooth technology study device, by comparing with the gold standard co-oximeter.
Design:
Prospective, observational study.
Setting:
Single institution, paediatric cardiac critical care unit, and neonatal ICU.
Interventions:
none.
Patients:
Twenty-four infants under 12 months of age with baseline oxygen saturation less than 90% due to cyanotic CHD.
Measurements and Results:
Pulse oximetry with WristOx2 3150 with infant sensors 8008 J (study device) and Masimo LCNS saturation sensor connected to a Philips monitor (hospital device) were measured simultaneously and compared to arterial oxy-haemoglobin saturation measured by co-oximetry. Statistical analysis evaluated the performances of each and compared to co-oximetry with Schuirmann’s TOST equivalence tests, with equivalence defined as an absolute difference of 5% saturation or less. Neither the study nor the hospital device met the predefined standard for equivalence when compared with co-oximetry. The study device reading was on average 4.0% higher than the co-oximeter, failing to show statistical equivalence (p = 0.16). The hospital device was 7.4% higher than the co-oximeter and also did not meet the predefined standard for equivalence (p = 0.97).
Conclusion:
Both devices tended to overestimate oxygen saturation in this patient population when compared to the gold standard, co-oximetry. The study device is at least as accurate as the hospital device and offers the advantage of being more portable with Bluetooth technology that allows reliable, efficient data transmission. Currently FDA-approved, smaller portable pulse oximeters can be considered for use in home monitoring programmes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.