Many farmers and consumers are reevaluating chemical weed control because of the environmental risks of herbicides and their influence on farm size and diversity. This paper reviews research of the last 35 years on mechanical and cultural weed control in corn (Zea mays L.) and soybeans (Glycine max L.). Soybeans can better use the weed control advantages of late planting and narrow row spacing and are less affected by early stand losses from mechanical weed control. In Minnesota, delaying planting to early June allows early germinating weeds to be controlled by preplant tillage but reduces the maximum yield potential of corn by approximately 25 percent and soybeans by approximately 10 percent. Narrow rows allow the crop canopy to close earlier, preventing emerging weeds from developing. However, in a nonchemical weed control system, the row spacing should allow for inter-row cultivation to control weeds that emerge with the crop. Up to a 10 percent reduction in crop stand may be expected in fields that have been rotary hoed. In Minnesota, a 10 percent stand loss results in a 2 percent loss of corn yield potential and no loss of soybean yield potential. Successful mechanical weed control is directly related to the timeliness of the operation. Rotary hoeing is effective on weeds that have germinated but not yet emerged but not on weeds that germinate from deeper than 5 cm, on no-till fields, or on fields with more than 20 to 30 percent crop residue. Inter-row cultivation is most effective on weeds up to 10 to 15 cm tall. Successful nonchemical weed control requires highly refined management skills and is as much an art as a science.