We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In Chapter 7 an effective non-Hermitian Hamiltonian was introduced. This topic is elaborated upon in this chapter. Examples are studied which use the artificial but useful notion of non-Hermitian – for both dynamical and stationary cases. One is a revisit of the example from Chapter 6 on a model atom exposed to a laser pulse. A complex absorbing potential is introduced to enable calculation on a numerical domain smaller than the actual physical system. The same technique is also applied to the examples seen in Chapter 2 on a wave packet hitting a barrier. By introducing a double barrier, the notion of resonances emerges. In this example, resonances are manifested in pronounced peaks in the transmission probability. If the same system is described by combining the time-independent Schrödinger equation with outgoing boundary conditions, the same peaks may be identified by complex energies. Discussion follows of the interpretation of the imaginary part as the width and the lifetime of a resonance. Finally, another type of resonances is studied, namely doubly excited states, and their relation to the physical phenomena of the Auger–Meitner effect and that of capture via dielectronic recombination. This is done in a rather non-technical way.
Consider Bernoulli bond percolation on a graph nicely embedded in hyperbolic space
$\mathbb{H}^d$
in such a way that it admits a transitive action by isometries of
$\mathbb{H}^d$
. Let
$p_{\text{a}}$
be the supremum of all percolation parameters such that no point at infinity of
$\mathbb{H}^d$
lies in the boundary of the cluster of a fixed vertex with positive probability. Then for any parameter
$p < p_{\text{a}}$
, almost surely every percolation cluster is thin-ended, i.e. has only one-point boundaries of ends.
In this paper, we prove several results on the exponential decay in $L^{2}$ norm of the KdV equation on the real line with localized dampings. First, for the linear KdV equation, the exponential decay holds if and only if the averages of the damping coefficient on all intervals of a fixed length have a positive lower bound. Moreover, under the same damping condition, the exponential decay holds for the (nonlinear) KdV equation with small initial data. Finally, with the aid of certain properties of propagation of regularity in Bourgain spaces for solutions of the associated linear system and the unique continuation property, the exponential decay for the KdV equation with large data holds if the damping coefficient has a positive lower bound on $E$, where $E$ is equidistributed over the real line and the complement $E^{c}$ has a finite Lebesgue measure.
We consider a Keller–Segel model that describes the cellular chemotactic movement away from repulsive chemical subject to logarithmic sensitivity function over a confined region in
${{\mathbb{R}}^n},\,n \le 2$
. This sensitivity function describes the empirically tested Weber–Fecher’s law of living organism’s perception of a physical stimulus. We prove that, regardless of chemotaxis strength and initial data, this repulsive system is globally well-posed and the constant solution is the global and exponential in time attractor. Our results confirm the ‘folklore’ that chemorepulsion inhibits the formation of non-trivial steady states within the logarithmic chemotaxis model, hence preventing cellular aggregation therein.
Large samples from a light-tailed distribution often have a well-defined shape. This paper examines the implications of the assumption that there is a limit shape. We show that the limit shape determines the upper quantiles for a large class of random variables. These variables may be described loosely as continuous homogeneous functionals of the underlying random vector. They play an important role in evaluating risk in a multivariate setting. The paper also looks at various coefficients of tail dependence and at the distribution of the scaled sample points for large samples. The paper assumes convergence in probability rather than almost sure convergence. This results in an elegant theory. In particular, there is a simple characterization of domains of attraction.
This chapter establishes the exponential decay of gamblets under an appropriate notion of distance derived from subspace decompositionin a way that generalizesdomain decomposition in the computation of PDEs.The first stepspresent sufficient conditions forlocalizationbased on a generalization of the Schwarz subspace decomposition and iterative correction methodintroduced by Kornhuber and Yserentantand the LOD method of Malqvist and Peterseim. However,when equipped withnonconforming measurement functions, one cannot directly work in the primal space, but instead one has to find ways to work in the dual space. Therefore, the next steps presentnecessary and sufficient conditions expressed as frame inequalities in dual spaces that, in applications to linear operators on Sobolev spaces,are expressed as Poincaré, inverse Poincaré, and frame inequalities.
In this paper we are interested in a sharp result about the global existence and blowup of solutions to a class of pseudo-parabolic equations. First, we represent a unique local weak solution in a new integral form that does not depend on any semigroup. Second, with the help of the Nehari manifold related to the stationary equation, we separate the whole space into two components S+ and S– via a new method, then a sufficient and necessary condition under which the weak solution blows up is established, that is, a weak solution blows up at a finite time if and only if the initial data belongs to S–. Furthermore, we study the decay behaviour of both the solution and the energy functional, and the decay ratios are given specifically.
This paper describes an application of the recently developed sparse scheme of the method of fundamental solutions (MFS) for the simulation of three-dimensional modified Helmholtz problems. The solution to the given problems is approximated by a two-step strategy which consists of evaluating the particular solution and the homogeneous solution. The homogeneous solution is approximated by the traditional MFS. The original dense system of the MFS formulation is condensed into a sparse system based on the exponential decay of the fundamental solutions. Hence, the homogeneous solution can be efficiently obtained. The method of particular solutions with polyharmonic spline radial basis functions and the localized method of approximate particular solutions in combination with the Gaussian radial basis function are employed to approximate the particular solution. Three numerical examples including a near singular problem are presented to show the simplicity and effectiveness of this approach.
Initial–boundary-value problems for the two-dimensional Zakharov–Kuznetsov equation posed on bounded rectangles and on a strip are considered. Spectral properties of a linearized operator and critical sizes of domains are studied. An exponential decay rate of regular solutions for the original nonlinear problems is proved.
We study the decay parameter (the rate of convergence of the transition probabilities) of a birth-death process on {0, 1, …}, which we allow to evanesce by escape, via state 0, to an absorbing state -1. Our main results are representations for the decay parameter under four different scenarios, derived from a unified perspective involving the orthogonal polynomials appearing in Karlin and McGregor's representation for the transition probabilities of a birth-death process, and the Courant-Fischer theorem on eigenvalues of a symmetric matrix. We also show how the representations readily yield some upper and lower bounds that have appeared in the literature.
In this paper, we investigated the possible exponential decays in the long term optical light curve of the BL Lac {OJ 287}. We developed a method that can be used to decomposing a light curve into a linear combination of exponential decays. The decomposing shows that the decay time scales range from ~ 103.6 to ~ 10−4 days. The power spectra has frequency-dependent power-law with slop ~ 0.5, and the peak of power is at the time scale of decay on ~ 160 days.
First, we consider a semilinear hyperbolic equation with a locally distributed damping in a boundeddomain. The damping is located on a neighborhood of a suitable portion of theboundary. Using a Carleman estimate [Duyckaerts, Zhang and Zuazua, Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear); Fu, Yong and Zhang, SIAM J. Contr. Opt.46 (2007) 1578–1614], we prove that the energy of this system decays exponentially to zero as the time variable goes to infinity. Second, relying on another Carleman estimate [Ruiz, J. Math. Pures Appl.71 (1992) 455–467], we address the same type of problem in an exterior domain for a locally damped semilinear wave equation. For both problems, our method of proof is constructive, and much simpler than those found in the literature. In particular, we improve in some way on earlier results by Dafermos, Haraux, Nakao, Slemrod and Zuazua.
sagvolden, johansen, aase, and russell (sagvolden et al.) examine attention-deficit/hyperactivity disorder (adhd) at levels of analysis ranging from neurotransmitters to behavior. at the behavioral level they attribute aspects of adhd to anomalies of delay-of-reinforcement gradients. with a normal gradient, responses followed after a long delay by a reinforcer may share in the effects of that reinforcer; with a diminished or steepened gradient they may fail to do so. steepened gradients differentially select rapidly emitted responses (hyperactivity), and they limit the effectiveness with which extended stimuli become conditioned reinforcers, so that observing behavior is less well maintained (attention deficit). impulsiveness also follows from steepened gradients, which increase the effectiveness of smaller, more immediate consequences relative to larger, more delayed ones. individuals who vary in the degree to which their delay gradients are steepened will show different balances between hyperactivity and attention deficit. given the range of adhd phenomena addressed, it may be unnecessary to appeal to additional behavioral processes such as extinction deficit. extinction deficit is more likely a derivative of attention deficit, in that failure to attend to stimuli differentially correlated with extinction should slow its progress. the account suggests how relatively small differences in delay gradients early in development might engender behavioral interactions leading to very large differences later on. the steepened gradients presumably originate in properties of neurotransmitter function, but behavioral interventions that use consistently short delays of reinforcement to build higher-order behavioral units as a scaffolding to support complex cognitive and social skills may nonetheless be feasible.
In the Bayesian estimation of higher-order Markov transition functions on finite state spaces, a prior distribution may assign positive probability to arbitrarily high orders. If there are n observations available, we show (for natural priors) that, with probability one, as n → ∞ the Bayesian posterior distribution ‘discriminates accurately' for orders up to β log n, if β is smaller than an explicitly determined β0. This means that the ‘large deviations' of the posterior are controlled by the relative entropies of the true transition function with respect to all others, much as the large deviations of the empirical distributions are governed by their relative entropies with respect to the true transition function. An example shows that the result can fail even for orders β log n if β is large.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.