We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study a non standard unique continuation property for the biharmonic spectral problem $\Delta^2 w=-\lambda\Delta w$ in a 2D corner with homogeneous Dirichlet boundary conditions and a supplementary third order boundary condition on one side of the corner. We prove that if the corner has an angle $0<\theta_0<2\pi$, $\theta_0\not=\pi$ and $\theta_0\not=3\pi/2$, a unique continuation property holds. Approximate controllability of a 2-D linear fluid-structure problem follows from this property, with a control acting on the elastic side of a corner in a domain containing a Stokes fluid. The proof of the main result is based in a power series expansion of the eigenfunctions near the corner, the resolution of a coupled infinite set of finite dimensional linear systems, and a result of Kozlov, Kondratiev and Mazya, concerning the absence of strong zeros for the biharmonic operator [Math. USSR Izvestiya34 (1990) 337–353]. We also show how the same methodologyused here can be adapted to exclude domains with corners to have a localversion of the Schiffer property for the Laplace operator.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.