Let ℳ(N, N) be the space of all N × N real matrices and let 𝒢(N) be the set of all linear subspaces of ℝN. The maps ker and coker from ℳ(N, N) onto 𝒢(N) induce two quotient topologies, the right and left respectively. A quasibundle over a space X is defined as a continuous map from X into 𝒢(N)\ it is a right quasibundle if 𝒢(N) = ℳ(N,N)/ ker and a left quasibundle if 𝒢(N) = ℳ(N,N)/ coker. The following is established. Theorem: Let ξ be a left quasibundle over a closed subset of some Euclidean space. Then the following statements are equivalent: (i) ξ has enough sections pointwise. (ii) Sections zero at infinity over closed subsets may be extended globally, (iii) A vector subbundle over a closed subset extends to a vector subbundle over a neighborhood, (iv) ξ is a fibrewise sum of local vector subbundles. (v) There exist finitely many global sections spanning ξ. (vi) ξ is an image quasibundle. (vii) ξ results from a Swan construction. These results are used to prove a version of the Hirsch-Smale immersion theorem for locally compact subsets of Euclidean space.