Suicide in the US has increased in the last decade, across virtually every age and demographic group. Parallel increases have occurred in non-fatal self-harm as well. Research on suicide across the world has consistently demonstrated that suicide shares many properties with a communicable disease, including person-to-person transmission and point-source outbreaks. This essay illustrates the communicable nature of suicide through analogy to basic infectious disease principles, including evidence for transmission and vulnerability through the agent–host–environment triad. We describe how mathematical modeling, a suite of epidemiological methods, which the COVID-19 pandemic has brought into renewed focus, can and should be applied to suicide in order to understand the dynamics of transmission and to forecast emerging risk areas. We describe how new and innovative sources of data, including social media and search engine data, can be used to augment traditional suicide surveillance, as well as the opportunities and challenges for modeling suicide as a communicable disease process in an effort to guide clinical and public health suicide prevention efforts.