We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The geomagnetic field supports a wide range of magnitudes, spatial scales and temporal variations. Outlined here are particular recent advances in temporal variability, stretching from geomagnetic field polarity reversals over millions of years, through secular field variations and ultra-low frequency (ULF) waves (1mHz – 5Hz), to very low frequency(VLF) emissions with frequencies in the kHz range. Long-term variations are discussed with respect to paleomagnetic, geological and archaeological records. Both external and internal fields contribute to temporal variations on decadal to daily time scales. More rapid oscillations at ULF wave frequencies associated with Sun-Earth connection contribute to weather in space. These involve the magnetosphere, ionosphere and atmosphere system, and may affect charged/neutral particle populations. Waves are generated external and internal to the magnetosphere and through integration of global magneto-hydrodynamic or local magneto-ionic modelling with satellite and ground observations, progress has been made in understanding the dynamics of waves and energy transfer within the coupled system. Equally important to space weather is the understanding of ULF and VLF waves on energetic charged particles in the Van Allen radiation belts during geomagnetic storms.