We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Pavlov [Adv. Math.295 (2016), 250–270; Nonlinearity32 (2019), 2441–2466] studied the measures of maximal entropy for dynamical systems with weak versions of specification property and found the existence of intrinsic ergodicity would be influenced by the assumptions of the gap functions. Inspired by these, in this article, we study the dynamical systems with non-uniform specification property. We give some basic properties these systems have and give an assumption for the gap functions to ensure the systems have the following five properties: CO-measures are dense in invariant measures; for every non-empty compact connected subset of invariant measures, its saturated set is dense in the total space; ergodic measures are residual in invariant measures; ergodic measures are connected; and entropy-dense. In addition, we will give examples to show the assumption is optimal.
This paper considers the family of invariant measures of Markovian mean-field interacting particle systems on a countably infinite state space and studies its large deviation asymptotics. The Freidlin–Wentzell quasipotential is the usual candidate rate function for the sequence of invariant measures indexed by the number of particles. The paper provides two counterexamples where the quasipotential is not the rate function. The quasipotential arises from finite-horizon considerations. However, there are certain barriers that cannot be surmounted easily in any finite time horizon, but these barriers can be crossed in the stationary regime. Consequently, the quasipotential is infinite at some points where the rate function is finite. After highlighting this phenomenon, the paper studies some sufficient conditions on a class of interacting particle systems under which one can continue to assert that the Freidlin–Wentzell quasipotential is indeed the rate function.
This paper is concerned with stochastic Schrödinger delay lattice systems with both locally Lipschitz drift and diffusion terms. Based on the uniform estimates and the equicontinuity of the segment of the solution in probability, we show the tightness of a family of probability distributions of the solution and its segment process, and hence the existence of invariant measures on $l^2\times L^2((-\rho,\,0);l^2)$ with $\rho >0$. We also establish a large deviation principle for the solutions with small noise by the weak convergence method.
We first introduce the concept of weak random periodic solutions of random dynamical systems. Then, we discuss the existence of such periodic solutions. Further, we introduce the definition of weak random periodic measures and study their relationship with weak random periodic solutions. In particular, we establish the existence of invariant measures of random dynamical systems by virtue of their weak random periodic solutions. We use concrete examples to illustrate the weak random periodic phenomena of dynamical systems induced by random and stochastic differential equations.
Granville recently asked how the Mahler measure behaves in the context of polynomial dynamics. For a polynomial $f(z)=z^d+\cdots \in {\mathbb C}[z],\ \deg (f)\ge 2,$ we show that the Mahler measure of the iterates $f^n$ grows geometrically fast with the degree $d^n,$ and find the exact base of that exponential growth. This base is expressed via an integral of $\log ^+|z|$ with respect to the invariant measure of the Julia set for the polynomial $f.$ Moreover, we give sharp estimates for such an integral when the Julia set is connected.
We generalize the greedy and lazy
$\beta $
-transformations for a real base
$\beta $
to the setting of alternate bases
${\boldsymbol {\beta }}=(\beta _0,\ldots ,\beta _{p-1})$
, which were recently introduced by the first and second authors as a particular case of Cantor bases. As in the real base case, these new transformations, denoted
$T_{{\boldsymbol {\beta }}}$
and
$L_{{\boldsymbol {\beta }}}$
respectively, can be iterated in order to generate the digits of the greedy and lazy
${\boldsymbol {\beta }}$
-expansions of real numbers. The aim of this paper is to describe the measure-theoretical dynamical behaviors of
$T_{{\boldsymbol {\beta }}}$
and
$L_{{\boldsymbol {\beta }}}$
. We first prove the existence of a unique absolutely continuous (with respect to an extended Lebesgue measure, called the p-Lebesgue measure)
$T_{{\boldsymbol {\beta }}}$
-invariant measure. We then show that this unique measure is in fact equivalent to the p-Lebesgue measure and that the corresponding dynamical system is ergodic and has entropy
$({1}/{p})\log (\beta _{p-1}\cdots \beta _0)$
. We give an explicit expression of the density function of this invariant measure and compute the frequencies of letters in the greedy
${\boldsymbol {\beta }}$
-expansions. The dynamical properties of
$L_{{\boldsymbol {\beta }}}$
are obtained by showing that the lazy dynamical system is isomorphic to the greedy one. We also provide an isomorphism with a suitable extension of the
$\beta $
-shift. Finally, we show that the
${\boldsymbol {\beta }}$
-expansions can be seen as
$(\beta _{p-1}\cdots \beta _0)$
-representations over general digit sets and we compare both frameworks.
In this paper we prove a local exponential synchronization for Markovian random iterations of homeomorphisms of the circle
$S^{1}$
, providing a new result on stochastic circle dynamics even for
$C^1$
-diffeomorphisms. This result is obtained by combining an invariance principle for stationary random iterations of homeomorphisms of the circle with a Krylov–Bogolyubov-type result for homogeneous Markov chains.
We consider random walks on the group of orientation-preserving homeomorphisms of the real line
${\mathbb R}$
. In particular, the fundamental question of uniqueness of an invariant measure of the generated process is raised. This problem was studied by Choquet and Deny [Sur l’équation de convolution
$\mu = \mu * \sigma $
. C. R. Acad. Sci. Paris250 (1960), 799–801] in the context of random walks generated by translations of the line. Nowadays the answer is quite well understood in general settings of strongly contractive systems. Here we focus on a broader class of systems satisfying the conditions of recurrence, contraction and unbounded action. We prove that under these conditions the random process possesses a unique invariant Radon measure on
${\mathbb R}$
. Our work can be viewed as following on from Babillot et al [The random difference equation
$X_n=A_n X_{n-1}+B_n$
in the critical case. Ann. Probab.25(1) (1997), 478–493] and Deroin et al [Symmetric random walk on
$\mathrm {HOMEO}^{+}(\mathbb {R})$
. Ann. Probab.41(3B) (2013), 2066–2089].
We show that recurrence conditions do not yield invariant Borel probability measures in the descriptive set-theoretic milieu, in the strong sense that if a Borel action of a locally compact Polish group on a standard Borel space satisfies such a condition but does not have an orbit supporting an invariant Borel probability measure, then there is an invariant Borel set on which the action satisfies the condition but does not have an invariant Borel probability measure.
We construct global-in-time singular dynamics for the (renormalized) cubic fourth-order nonlinear Schrödinger equation on the circle, having the white noise measure as an invariant measure. For this purpose, we introduce the ‘random-resonant / nonlinear decomposition’, which allows us to single out the singular component of the solution. Unlike the classical McKean, Bourgain, Da Prato-Debussche type argument, this singular component is nonlinear, consisting of arbitrarily high powers of the random initial data. We also employ a random gauge transform, leading to random Fourier restriction norm spaces. For this problem, a contraction argument does not work, and we instead establish the convergence of smooth approximating solutions by studying the partially iterated Duhamel formulation under the random gauge transform. We reduce the crucial nonlinear estimates to boundedness properties of certain random multilinear functionals of the white noise.
One of the most important and widely used methods for constructing fractal sets is via iterated function systems. These were introduced in a celebrated article of Hutchinson from 1980. We consider the special case of self-similar sets in Chapter 7, self-affine sets in Chapter 8, and self-conformal sets in Section 9.1, but in this chapter we introduce the theory of iterated function systems and their attractors in full generality.
We study the dynamics of towers defined by fixed points of renormalization for Feigenbaum polynomials in the complex plane with varying order
$\ell $
of the critical point. It is known that the measure of the Julia set of the Feigenbaum polynomial is positive if and only if almost every point tends to
$0$
under the dynamics of the tower for corresponding
$\ell $
. That in turn depends on the sign of a quantity called the drift. We prove the existence and key properties of absolutely continuous invariant measures for tower dynamics as well as their convergence when
$\ell $
tends to
$\infty $
. We also prove the convergence of the drifts to a finite limit, which can be expressed purely in terms of the limiting tower, which corresponds to a Feigenbaum map with a flat critical point.
We show that spacetime diagrams of linear cellular automata $\unicode[STIX]{x1D6F7}:\,\mathbb{F}_{p}^{\mathbb{Z}}\rightarrow \mathbb{F}_{p}^{\mathbb{Z}}$ with $(-p)$-automatic initial conditions are automatic. This extends existing results on initial conditions that are eventually constant. Each automatic spacetime diagram defines a $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant subset of $\mathbb{F}_{p}^{\mathbb{Z}}$, where $\unicode[STIX]{x1D70E}$ is the left shift map, and if the initial condition is not eventually periodic, then this invariant set is nontrivial. For the Ledrappier cellular automaton we construct a family of nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measures on $\mathbb{F}_{3}^{\mathbb{Z}}$. Finally, given a linear cellular automaton $\unicode[STIX]{x1D6F7}$, we construct a nontrivial $(\unicode[STIX]{x1D70E},\unicode[STIX]{x1D6F7})$-invariant measure on $\mathbb{F}_{p}^{\mathbb{Z}}$ for all but finitely many $p$.
After a brief discussion of invariant measures and entropy, we introduce semidynamical and dynamical systems. We use Koopmanism to show how to obtain semigroups/groups of linear operators on function spaces, when we have a quasi-invariant measure. Applications are given to solution flows of differential equations. In the last part we discuss “dilations” as a mathematical approach to the origins of irreversibility.
We construct a simple example, surely known to Harry Kesten, of an R-transient Markov chain on a countable state space S ∪ {δ}, where δ is absorbing. The transition matrix K on S is irreducible and strictly substochastic. We determine the Yaglom limit, that is, the limiting conditional behavior given nonabsorption. Each starting state x ∈ S results in a different Yaglom limit. Each Yaglom limit is an R-1-invariant quasi-stationary distribution, where R is the convergence parameter of K. Yaglom limits that depend on the starting state are related to a nontrivial R-1-Martin boundary.
We are interested in the rate of convergence of a subordinate Markov process to its invariant measure. Given a subordinator and the corresponding Bernstein function (Laplace exponent), we characterize the convergence rate of the subordinate Markov process; the key ingredients are the rate of convergence of the original process and the (inverse of the) Bernstein function. At a technical level, the crucial point is to bound three types of moment (subexponential, algebraic, and logarithmic) for subordinators as time t tends to ∞. We also discuss some concrete models and we show that subordination can dramatically change the speed of convergence to equilibrium.
This paper is devoted to probabilistic cellular automata (PCAs) on N,Z or Z / nZ, depending on two neighbors with a general alphabet E (finite or infinite, discrete or not). We study the following question: under which conditions does a PCA possess a Markov chain as an invariant distribution? Previous results in the literature give some conditions on the transition matrix (for positive rate PCAs) when the alphabet E is finite. Here we obtain conditions on the transition kernel of a PCA with a general alphabet E. In particular, we show that the existence of an invariant Markov chain is equivalent to the existence of a solution to a cubic integral equation. One of the difficulties in passing from a finite alphabet to a general alphabet comes from the problem of measurability, and a large part of this work is devoted to clarifying these issues.
In this paperwe present a fixed point property for amenable hypergroups that is analogous to Rickert’s fixed point theorem for semigroups. It equates the existence of a left invariant mean on the space of weakly right uniformly continuous functions to the existence of a fixed point for any action of the hypergroup. Using this fixed point property, certain hypergroups are shown to have a left Haar measure.