We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\langle X,d \rangle $ be a metric space. We characterise the family of subsets of $X$ on which each locally Lipschitz function defined on $X$ is bounded, as well as the family of subsets on which each member of two different subfamilies consisting of uniformly locally Lipschitz functions is bounded. It suffices in each case to consider real-valued functions.
Using a non-smooth version (due to Marano and Motreanu) of a variational principle of Ricceri we prove the existence of infinitely many solutions for certain systems of differential inclusions with various types of boundary conditions.
In this paper we study nonlinear elliptic problems of Neumann type driven by the $p$-Laplacian differential operator. We look for situations guaranteeing the existence of multiple solutions. First we study problems which are strongly resonant at infinity at the first (zero) eigenvalue. We prove five multiplicity results, four for problems with nonsmooth potential and one for problems with a ${{C}^{1}}$-potential. In the last part, for nonsmooth problems in which the potential eventually exhibits a strict super-$p$-growth under a symmetry condition, we prove the existence of infinitely many pairs of nontrivial solutions. Our approach is variational based on the critical point theory for nonsmooth functionals. Also we present some results concerning the first two elements of the spectrum of the negative $p$-Laplacian with Neumann boundary condition.
In this paper we complete two tasks. First we extend the nonsmooth critical point theory of Chang to the case where the energy functional satisfies only the weaker nonsmooth Cerami condition and we also relax the boundary conditions. Then we study semilinear and quasilinear equations (involving the p-Laplacian). Using a variational approach we establish the existence of one and of multiple solutions. In simple existence theorems, we allow the right hand side to be discontinuous. In that case in order to have an existence theory, we pass to a multivalued approximation of the original problem by, roughly speaking, filling in the gaps at the discontinuity points.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.