We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Measurable residual disease (MRD) is an established prognostic factor after induction chemotherapy in acute myeloid leukaemia patients. Over the past decades, molecular and flow cytometry-based assays have been optimized to provide highly specific and sensitive MRD assessment that is clinically validated. Flow cytometry is an accessible technique available in most clinical diagnostic laboratories worldwide and has the advantage of being applicable in approximately 90% of patients. Here, the essential aspects of flow cytometry-based MRD assessment are discussed, focusing on the identification of leukaemic cells using leukaemia associated immunophenotypes. Analysis, detection limits of the assay, reporting of results and current clinical applications are also reviewed. Additionally, limitations of the assay will be discussed, including the future perspective of flow cytometry-based MRD assessment.
Acute lymphoblastic leukaemia (ALL) is the most common cancer in childhood but shows a very low frequency in adults. Even in the genomics era, multiparametric flow cytometry is still critical for ALL diagnosis and management. At diagnosis, it determines the proper therapeutic approach through blast characterization and lineage assignment. During treatment, it is an essential tool for response to therapy monitoring through minimal/measurable residual disease detection. Additionally, multiparametric flow cytometry is fundamental in the even more applied immunotherapy setting, recognizing any potential switch of blast immunophenotype.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.