We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to summarize the evidence on sleep alterations in medication-naïve children and adolescents with autism spectrum disorder (ASD).
Methods
We systematically searched PubMed/Medline, Embase and Web of Science databases from inception through March 22, 2021. This study was registered with PROSPERO (CRD42021243881). Any observational study was included that enrolled medication-naïve children and adolescents with ASD and compared objective (actigraphy and polysomnography) or subjective sleep parameters with typically developing (TD) counterparts. We extracted relevant data such as the study design and outcome measures. The methodological quality was assessed through the Newcastle-Ottawa Scale (NOS). A meta-analysis was carried out using the random-effects model by pooling effect sizes as Hedges’ g. To assess publication bias, Egger’s test and p-curve analysis were done. A priori planned meta-regression and subgroup analysis were also performed to identify potential moderators.
Results
Out of 4277 retrieved references, 16 studies were eligible with 981 ASD patients and 1220 TD individuals. The analysis of objective measures showed that medication-naïve ASD patients had significantly longer sleep latency (Hedges’ g 0.59; 95% confidence interval [95% CI] 0.26 to 0.92), reduced sleep efficiency (Hedges’ g −0.58; 95% CI −0.87 to −0.28), time in bed (Hedges’ g −0.64; 95% CI −1.02 to −0.26) and total sleep time (Hedges’ g −0.64; 95% CI −1.01 to −0.27). The analysis of subjective measures showed that they had more problems in daytime sleepiness (Hedges’ g 0.48; 95% CI 0.26 to 0.71), sleep latency (Hedges’ g 1.15; 95% CI 0.72 to 1.58), initiating and maintaining sleep (Hedges’ g 0.86; 95% CI 0.39 to 1.33) and sleep hyperhidrosis (Hedges’ g 0.48; 95% CI 0.29 to 0.66). Potential publication bias was detected for sleep latency, sleep period time and total sleep time measured by polysomnography. Some sleep alterations were moderated by age, sex and concurrent intellectual disability. The median NOS score was 8 (interquartile range 7.25–8.75).
Conclusion
We found that medication-naïve children and adolescents with ASD presented significantly more subjective and objective sleep alterations compared to TD and identified possible moderators of these differences. Future research requires an analysis of how these sleep alterations are linked to core symptom severity and comorbid behavioural problems, which would provide an integrated therapeutic intervention for ASD. However, our results should be interpreted in light of the potential publication bias.
People with psychosis are at higher risk of cardiovascular events, partly explained by a higher predisposition to gain weight. This has been observed in studies on individuals with a first-episode psychosis (FEP) at short and long term (mainly up to 1 year) and transversally at longer term in people with chronic schizophrenia. However, there is scarcity of data regarding longer-term (above 3-year follow-up) weight progression in FEP from longitudinal studies. The aim of this study is to evaluate the longer-term (10 years) progression of weight changes and related metabolic disturbances in people with FEP.
Methods
Two hundred and nine people with FEP and 57 healthy participants (controls) were evaluated at study entry and prospectively at 10-year follow-up. Anthropometric, clinical, and sociodemographic data were collected.
Results
People with FEP presented a significant and rapid increase in mean body weight during the first year of treatment, followed by less pronounced but sustained weight gain over the study period (Δ15.2 kg; SD 12.3 kg). This early increment in weight predicted longer-term changes, which were significantly greater than in healthy controls (Δ2.9 kg; SD 7.3 kg). Weight gain correlated with alterations in lipid and glycemic variables, leading to clinical repercussion such as increments in the rates of obesity and metabolic disturbances. Sex differences were observed, with women presenting higher increments in body mass index than men.
Conclusions
This study confirms that the first year after initiating antipsychotic treatment is the critical one for weight gain in psychosis. Besides, it provides evidence that weight gain keep progressing even in the longer term (10 years), causing relevant metabolic disturbances.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.