We present a new approach to noncommutative real algebraic geometry based on the representation theory of
${{C}^{*}}$-algebras. An important result in commutative real algebraic geometry is Jacobi's representation theorem for archimedean quadratic modules on commutative rings. We show that this theorem is a consequence of the Gelfand–Naimark representation theorem for commutative
${{C}^{*}}$-algebras. A noncommutative version of Gelfand–Naimark theory was studied by I. Fujimoto. We use his results to generalize Jacobi's theorem to associative rings with involution.