We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The catenary degree is an invariant that measures the distance between factorisations of elements within an atomic monoid. In this paper, we classify which finite subsets of $\mathbb{Z}_{\geq 0}$ occur as the set of catenary degrees of a numerical monoid (that is, a co-finite, additive submonoid of $\mathbb{Z}_{\geq 0}$). In particular, we show that, with one exception, every finite subset of $\mathbb{Z}_{\geq 0}$ that can possibly occur as the set of catenary degrees of some atomic monoid is actually achieved by a numerical monoid.
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}M$ be a commutative cancellative monoid. For $m$ a nonunit in $M$, the catenary degree of $m$, denoted $c(m)$, and the tame degree of $m$, denoted $t(m)$, are combinatorial constants that describe the relationships between differing irreducible factorizations of $m$. These constants have been studied carefully in the literature for various kinds of monoids, including Krull monoids and numerical monoids. In this paper, we show for a given numerical monoid $S$ that the sequences $\{c(s)\}_{s\in S}$ and $\{t(s)\}_{s\in S}$ are both eventually periodic. We show similar behavior for several functions related to the catenary degree which have recently appeared in the literature. These results nicely complement the known result that the sequence $\{\Delta (s)\}_{s\in S}$ of delta sets of $S$ also satisfies a similar periodicity condition.
Questions concerning the lengths of factorizations into irreducible elements in numerical monoids have gained much attention in the recent literature. In this note, we show that a numerical monoid has an element with two different irreducible factorizations of the same length if and only if its embedding dimension is greater than two. We find formulas in embedding dimension three for the smallest element with two different irreducible factorizations of the same length and the largest element whose different irreducible factorizations all have distinct lengths. We show that these formulas do not naturally extend to higher embedding dimensions.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.