We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\mathbf {G}$ be a connected reductive algebraic group over an algebraically closed field $\Bbbk $ and ${\mathbf B}$ be a Borel subgroup of ${\mathbf G}$. In this paper, we completely determine the composition factors of the permutation module $\mathbb {F}[{\mathbf G}/{\mathbf B}]$ for any field $\mathbb {F}$.
The most combinatorially interesting maximal subgroups of M24 are the stabilizers of an octad, a duum, a sextet and a trio. In this chapter we investigate the way in which the stabilizer of one of these objects acts on the others. This involves some basic but fascinating character theory; the approach given here is intended to be self-contained. For each of the four types of object we draw a graph in which each member is joined to members of the shortest orbit of its stabilizer. Thus in the octad graph we join two octads if they are disjoint; we join two dua if they cut one another 8.4/4.8; we join two sextets if the tetrads of one cut the tetrads of the other (22.04)6; and we join two trios if they have an octad in common. A diagram of each of these four graphs is included as is the way in which these graphs decompose under the action of one of the other stabilizers. Each of these graphs is, of course, preserved by M24.
Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators
$\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$
for primes p and
$n \in \mathbb {N}$
, where G is a finite group and
$\chi $
is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.