The condition assessment of underground infrastructure (UI) is critical for maintaining the safety, functionality, and longevity of subsurface assets like tunnels and pipelines. This article reviews various data acquisition techniques, comparing their strengths and limitations in UI condition assessment. In collecting structured data, traditional methods like strain gauge can only obtain relatively low volumes of data due to low sampling frequency, manual data collection, and transmission, whereas more advanced and automatic methods like distributed fiber optic sensing can gather relatively larger volumes of data due to automatic data collection, continuous sampling, or comprehensive monitoring. Upon comparison, unstructured data acquisition methods can provide more detailed visual information that complements structured data. Methods like closed-circuit television and unmanned aerial vehicle produce large volumes of data due to their continuous video recording and high-resolution imaging, posing great challenges to data storage, transmission, and processing, while ground penetration radar and infrared thermography produce smaller volumes of image data that are more manageable. The acquisition of large volumes of UI data is the first step in its condition assessment. To enable more efficient, accurate, and reliable assessment, it is recommended to (1) integrate data analytics like artificial intelligence to automate the analysis and interpretation of collected data, (2) to develop robust big data management platforms capable of handling large volumes of data storage, processing and analysis, (3) to couple different data acquisition technologies to leverage the strengths of each technique, and (4) to continuously improve data acquisition methods to ensure efficient and reliable data acquisition.