We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Fetal cardiac intervention provides fetuses with certain cardiac anomalies, a greater likelihood of biventricular circulation and/or treatment options after delivery. Anesthesia care for mothers undergoing fetal cardiac intervention has evolved over the years and more recently involves the use of neuraxial anesthesia with sedation. The maternal fetal anesthesiologist caring for the patient undergoing fetal cardiac intervention should be conversant with the diagnosis, pathophysiology, and planned intervention. This is important for appropriate anticipation and treatment of hemodynamic changes that may occur in the fetus immediately following intervention.
Transcatheter right ventricle decompression in neonates with pulmonary atresia and intact ventricular septum is technically challenging, with risk of cardiac perforation and death. Further, despite successful right ventricle decompression, re-intervention on the pulmonary valve is common. The association between technical factors during right ventricle decompression and the risks of complications and re-intervention are not well described.
Methods
This is a multicentre retrospective study among the participating centres of the Congenital Catheterization Research Collaborative. Between 2005 and 2015, all neonates with pulmonary atresia and intact ventricular septum and attempted transcatheter right ventricle decompression were included. Technical factors evaluated included the use and characteristics of radiofrequency energy, maximal balloon-to-pulmonary valve annulus ratio, infundibular diameter, and right ventricle systolic pressure pre- and post-valvuloplasty (BPV). The primary end point was cardiac perforation or death; the secondary end point was re-intervention.
Results
A total of 99 neonates underwent transcatheter right ventricle decompression at a median of 3 days (IQR 2–5) of age, including 63 patients by radiofrequency and 32 by wire perforation of the pulmonary valve. There were 32 complications including 10 (10.5%) cardiac perforations, of which two resulted in death. Cardiac perforation was associated with the use of radiofrequency (p=0.047), longer radiofrequency duration (3.5 versus 2.0 seconds, p=0.02), and higher maximal radiofrequency energy (7.5 versus 5.0 J, p<0.01) but not with patient weight (p=0.09), pulmonary valve diameter (p=0.23), or infundibular diameter (p=0.57). Re-intervention was performed in 36 patients and was associated with higher post-intervention right ventricle pressure (median 60 versus 50 mmHg, p=0.041) and residual valve gradient (median 15 versus 10 mmHg, p=0.046), but not with balloon-to-pulmonary valve annulus ratio, atmospheric pressure used during BPV, or the presence of a residual balloon waist during BPV. Re-intervention was not associated with any right ventricle anatomic characteristics, including pulmonary valve diameter.
Conclusion
Technical factors surrounding transcatheter right ventricle decompression in pulmonary atresia and intact ventricular septum influence the risk of procedural complications but not the risk of future re-intervention. Cardiac perforation is associated with the use of radiofrequency energy, as well as radiofrequency application characteristics. Re-intervention after right ventricle decompression for pulmonary atresia and intact ventricular septum is common and relates to haemodynamic measures surrounding initial BPV.
Pulmonary balloon valvuloplasty is a safe and effective treatment for children with pulmonary valve stenosis. A few studies evaluate the long-term outcomes of the procedure, particularly the degree of pulmonary regurgitation. We evaluated the outcomes of children >1 year following valvuloplasty for pulmonary valve stenosis.
Methods
A retrospective analysis of children with pulmonary valve stenosis following pulmonary balloon valvuloplasty at a single institution was performed. Clinic summaries, catheterisation data, and echocardiographic data were reviewed. Inclusion criteria were isolated pulmonary valve stenosis, age <19 years at the time of intervention, and at least one echocardiogram performed at least 1 year after valvuloplasty.
Results
A total of 53 patients met inclusion criteria. The median age at valvuloplasty was 0.4 years (0.01–10.6 years). The last follow-up was 4.8±2.3 years following valvuloplasty. The pre-valvuloplasty peak instantaneous gradient by echocardiography was 60.6±14.6 mmHg. The peak gradient at the first postoperative echocardiography was reduced to 25.5±12 mmHg (p<0.001), and further decreased to 14.8±15.8 mmHg (p<0.001) at the most recent follow-up. The degree of regurgitation increased from before valvuloplasty to after valvuloplasty (p<0.001) but did not progress at the most recent follow-up (p=0.17). Only three patients (5.7%) required re-intervention for increasing pulmonary stenosis (two surgical; one repeat balloon). No significant procedural complications occurred.
Conclusions
Pulmonary balloon valvuloplasty remains a safe and effective treatment for children with isolated pulmonary valve stenosis, with excellent long-term outcomes and no mortality. A few patients require further intervention. Long-term follow-up demonstrates decreased, residual stenosis. Patients have a small, acute increase in pulmonary regurgitation following valvuloplasty, but no long-term progression.
Pulmonary atresia and intact ventricular septum is a complex congenital heart disease with great morphological variability. Approximately two-thirds of patients may be suitable for transcatheter pulmonary valvotomy. We reviewed our experience in the use of two different percutaneous approaches to evaluate the impact on fluoroscopy time and morbidity of a new technique to perform transcatheter radiofrequency perforation and valvotomy in newborns with pulmonary atresia and intact ventricular septum.
Methods and Results
In all, 31 patients underwent radiofrequency perforation of the pulmonary valve. The first 14 infants were treated using a 5 French Judkins right coronary catheter, which was manoeuvred directly underneath the atretic pulmonary valve (Group A). The others were treated using a telescopic system consisting of Northstar Lumax Flex and White Lumax Guiding Catheters (Cook; Group B). In both groups, after radiofrequency perforation of the pulmonary valve, a 0.014-inch superfloppy guidewire was advanced into the descending aorta and balloon dilations were performed. Required fluoroscopy time was significantly lower in Group B (48.5 ± 28.1 versus 24.9 ± 14.4 minutes, respectively; p < 0.01). A higher incidence of unfavourable events including the need for early surgery was found in Group A.
Conclusion
In our experience, telescopic catheter proved to be a valid option able to decrease the fluoroscopy time of percutaneous radiofrequency perforation of pulmonary valve and consequently patients’ exposure to procedure-related risks.
To evaluate the results of balloon dilatation of stenotic homografts in children, adolescents, and young adults and to identify factors that might influence or predict the effect of the dilatation.
Background
Homografts are widely used in congenital cardiac surgery; however, the longevity remains a problem mostly because of stenosis in the homograft. The effect of treatment by balloon dilatation is unclear.
Methods
In a retrospective study, the effect of balloon dilatation was determined by the percentage of reduction of the peak systolic pressure gradient over the homograft during catheterisation and the postponement of re-intervention or replacement of the homograft in months. Successful dilatations – defined in this study as a reduction of more than 33% and postponement of more than 18 months – were compared with unsuccessful dilatations in search of factors influencing or predicting the results.
Results
The mean reduction of the peak systolic pressure gradient was 30% in 40 procedures. Re-intervention or replacement of the homograft was postponed by a mean of 19 months. In all, 14 balloon dilatations (35%) were successful; the mean reduction was 49% and the mean postponement was 34 months. The time since homograft implantation, the presence of calcification, the homograft/balloon ratio, and the pressure applied during dilatation all tended to correlate with outcome, but were not statistically significant.
Conclusions
Balloon dilatation is able to reduce the peak systolic pressure gradient over homografts in a subgroup of patients and can be of clinical significance to postpone re-intervention or pulmonary valve replacement.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.