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1. Introduction

The main purpose of this paper is to establish the existence and uniqueness of
solutions for a strongly non-linear elliptic equation with irregular data and very
mild limitations on the growth of the operator. The leading part of the operator
satisfies general growth conditions settling the problem in the framework of fully
anisotropic and inhomogeneous Musielak–Orlicz spaces generated by an N -function
M : Ω × R

n → [0,∞). Note that no growth hypothesis of doubling type is assumed
on the function M . The price we pay for relaxing the condition is to assume that
there is a condition balancing the behaviour of M with respect to its variable, which
can ensure the density of smooth functions in the related Sobolev-type space.

Let us present our framework. Suppose that Ω is a bounded Lipschitz domain in
R

n, n > 1, f : Ω → R, f ∈ L1(Ω) and F ∈ EM∗(Ω; Rn). In this paper, we study the
following problem{−div

(A(x,∇u) + Φ(u)
)

+ b(x, u) = f + div F in Ω,
u(x) = 0 on ∂Ω,

(1.1)
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2 B. Budnarowski and Y. Li

where the function A : Ω × R
n → R

n satisfies the following conditions:

(A1) A is a Carathéodory’s function (i.e. measurable with respect to the first
variable and continuous with respect to the second one);

(A2) A(x, 0) = 0 for almost every x ∈ Ω and there exist an N -function M : Ω ×
R

n → [0,∞) and constants cA1 , cA2 , cA3 , cA4 > 0 such that for all ξ ∈ R
n we

have

A(x, ξ) · ξ � M(x, cA1 ξ)

and

cA2 M∗(x, cA3 A(x, ξ)) � M(x, cA4 ξ);

(A3) For all ξ, η ∈ R
n and a.e. x ∈ Ω we have

(A(x, ξ) −A(x, η)) · (ξ − η) � 0.

Moreover, we assume

(P) Φ : R → R
n is a Lipschitz continuous function;

(b) b : Ω × R → R is a Carathéodory’s function nondecreasing with respect to
the second variable, and such that b(·, s) ∈ L1(Ω) and b(·, s) sign (s) � 0 for
every s ∈ R.

As it is well known when the operator A(x, ξ) = |ξ|p−2ξ or M(x, ξ) = |ξ|p, the
problem is posed in the classical Sobolev setting. However, in the real world,
the non-linear terms involved in the problems are often of non-standard growth. The
study of differential equations with non-standard growth conditions has attracted
extensive attention in recent decades. We refer to [22, 31, 43] for problems governed
by conditions of (p, q)-type. Variable exponent problems were introduced in [23,
27]. This paper deals with elliptic problems under conditions expressed by a gener-
alized Orlicz function. Musielak–Orlicz spaces, which include the variable exponent,
Orlicz, weighted and double-phase spaces, have been studied systematically starting
from [46, 50, 51]. There have been wide research activities in the Musielak–Orlicz
spaces. We refer to [32, 42] for the existence of solutions in isotropic, separable
and reflexive Musielak–Orlicz–Sobolev spaces. In [30] separable, but not reflexive
Musielak–Orlicz spaces were applied. We would like to point out that non-linear
elliptic boundary value problems in non-reflexive Musielak–Orlicz–Sobolev type set-
ting were first considered by Donaldson in [29] and followed by Gossez [33, 34].
We mention that [20, 21, 40] laid the cornerstone for studying the PDEs problem
in fully anisotropic spaces. [2, 4, 19] were devoted to the study of problems in
anisotropic Orlicz spaces governed by a possibly fully anisotropic modular function
that is independent of the spatial variables. For the problems that are in the same
time of general growth, inhomogeneous and fully anisotropic, we refer to [16, 17,
24, 39, 41], but none of them are concerned with the lower order terms. In particu-
lar, to comprehend the background of our problems better, we refer the readers to a
monograph [15] and a review paper [12] discussing PDEs in Musielak–Orlicz spaces
for details. We also mention the paper [44] which is a comprehensive overview of
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recent results concerning elliptic variational problems with non-standard growth
conditions and related to different kinds of non-uniformly elliptic operators.

Our focus in this paper is to establish the existence of solutions for problem (1.1).
Since we consider problems with data of low integrability, the weak solutions are not
well-defined and we need to consider a generalized definition of solutions, namely
renormalized solutions. The notion of renormalized solutions was first introduced
by DiPerna and Lions [28] for the study of the Boltzmann equation. The concept
was then adapted to the study of some non-linear elliptic and parabolic problems
[6, 7]. The existence of renormalized solutions in the variable exponents setting was
considered in [53, 55]. We refer to [47, 49, 56] for this issue in the non-reflexive
Orlicz–Sobolev space.

There have been many articles about the renormalized solutions in
Musielak–Orlicz space. Gwiazda et al. [36] proved the existence and uniqueness of
renormalized solutions in the non-homogeneous and non-reflexive Musielak–Orlicz
spaces for a general class of non-linear elliptic problems associated with the
differential inclusion

β(x, u) − div

(
A(x, u) + F (u)

)
� f ,

where f ∈ L1(Ω). The growth and coercivity conditions on the monotone vector
field A are prescribed by a generalized N -function M which is anisotropic and
inhomogeneous with respect to the space variable, and Δ2-condition was imposed
on the N -function M∗. We refer to [37] for the corresponding parabolic problem
under the same assumption on M∗. This work was then extended by Gwiazda et al.
in [35] for N -function M∗ not necessarily satisfying the Δ2-condition. The authors
in [35] proved the existence of renormalized solutions to the elliptic equation

−divA(x,∇u) = f ∈ L1(Ω) ,

in a fully anisotropic space. In [35–37] the leading part of the operator satisfies
condition

cA

(
M(x, ξ) + M∗(x,A(x, ξ))

)
� A(x, ξ)ξ

for cA ∈ (0, 1], which covers more narrow family of operator than our condition
(A2). See [15, Section 3.8.2] for detailed explanation.

Inspired by the above papers, we want to extend the results obtained in [18, 35,
36]. We proved the existence of renormalized solutions for Eqn (1.1) in the setting of
fully anisotropic and inhomogeneous Musielak–Orlicz spaces. Under an additional
strict monotonicity assumption, uniqueness of renormalized solution is established.
Many well-known results in the variable exponent, anisotropic polynomial, double
phase and classical Orlicz setting are covered by our paper. We emphasize that no
growth hypothesis of doubling type is assumed on the function M . Thanks to [9],
we have the following balance condition, which gave us a sufficient condition to
guarantee that the smooth function is modular dense in Musielak–Orlicz space. We
shall stress that it is only applied to ensure the density of smooth functions.
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Balance condition (B). Given an N -function M : Ω × R
n → [0,∞) suppose

there exists a constant CM > 1 such that for every ball B ⊂ Ω with |B| � 1, every
x ∈ B, and for all ξ ∈ R

n such that |ξ| > 1 and M(x, CMξ) ∈ [1, 1
|B| ] there holds

supy∈B M(y, ξ) � M(x, CMξ).
Note that in the isotropic and doubling regime, this condition is known to be

sufficient to the boundedness of the maximal operator. Moreover, when d = 1 they
are equivalent [38]. Condition (B) is essentially less restrictive than the isotropic
one from [1] or the anisotropic ones used in [15, 35]. Following [9, 38], we give
examples of N -functions satisfying the above balance condition. See also [10] for
more general condition than (B).

Example 1.1. The following N -functions fit into our setting.

• Variable exponent case: M(x, ξ) = |ξ|p(x), where p(x) : Ω → [p−, p+] is log-
Hölder continuous and 1 < p− � p(·) � p+ � ∞; see the proof of [38, Proposi-
tion 7.1.2].

• Double phase case: M(x, ξ) = |ξ|p + a(x)|ξ|q, with 1 < p � q < ∞, 0 � a ∈
C0,α(Ω), α ∈ (0, 1], q/p � 1 + α/n; see the proof of [38, Proposition 7.2.2].

• Anisotropic variable case: M(x, ξ) =
∑n

i=1 |ξi|pi(x), where pi(x) : Ω → [p−i , p+
i ]

are log-Hölder continuous and 1 < p−i � pi(·) � p+
i � ∞; see [9, Subsection

4.4.].

• Anisotropic double phase case: M(x, ξ) =
∑n

i=1(|ξi|pi + ai(x)|ξi|qi), where 1 <
pi � qi < ∞, 0 � ai ∈ C0,αi(Ω), αi ∈ (0, 1], and qi/pi � 1 + αi/n; as well as
anisotropic multi-phase case (also with Orlicz phases), see [9, Subsection 4.4.].

Taking into account [19] and [9, Section 4] one can provide an explicit condition
that implies (B) even in the case when the anisotropic function M(x, ξ) does not
admit a so-called orthotropic decomposition

∑d
i=1 Mi(x, ξi) even after an affine

change of variables.

Before we give the definition of renormalized solution to (1.1). We shall introduce
the truncation Tk(s) as follows

Tk(s)(x) =

{
s |s| � k,

k
s

|s| |s| � k. (1.2)

Note that as a consequence of Lemma 2.1 of [5], for every measurable function u
on Ω such that Tk(u) ∈ V 1

0 LM for every k > 0, there exists a unique measurable
function Zu : Ω → R

N such that

∇Tk(u) = χ{|u|<k}Zu for almost every x ∈ Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set E. We will
understand ∇u as a pointwise limit of ∇Tk(u) as k → ∞.
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Definition 1.2. We call a function u a renormalized solution to (1.1), when it
satisfies the following conditions:

(R1) u : Ω → R is measurable and for each k > 0

Tk(u) ∈ V 1
0 LM (Ω) ∩ L∞(Ω), A(x,∇Tk(u)) ∈ LM∗(Ω; Rn),

where

V 1
0 LM (Ω) := {ϕ ∈ W 1,1

0 (Ω) : ∇ϕ ∈ LM (Ω; Rn)}.
(R2) For every h ∈ C1

c (R) and all ϕ ∈ V 1
0 LM (Ω) ∩ L∞(Ω) we have∫

Ω

A(x,∇u) · ∇(h(u)ϕ) + Φ(u) · ∇(h(u)ϕ) + b(x, u)h(u)ϕ dx

=
∫

Ω

fh(u)ϕ + F · ∇(h(u)ϕ) dx.

(R3)
∫
{l<|u|<l+1} A(x, ∇u) · ∇u dx → 0 as l → ∞.

Our main result reads as follows.

Theorem 1.3. Suppose f ∈ L1(Ω), F ∈ EM∗(Ω; Rn), an N -function M is regular
enough so that C∞

c (Ω) is dense in V 1
0 LM (Ω) in the modular topology. Function

A satisfies assumptions (A1), (A2) and (A3), Φ satisfies (P), and b satisfies (b).
Then there exists at least one renormalized solution to the problem{−div

(A(x,∇u) + Φ(u)
)

+ b(x, u) = f + div F in Ω,
u(x) = 0 on ∂Ω,

Namely, there exists u, which satisfies (R1)–(R3).

Proposition 1.4. Under the assumptions of theorem 1.3, if we assume that s →
b(·, s) is strictly increasing, then the renormalized solution is unique.

We briefly introduce our approach to the proof of our main results. Our growth
conditions put the problem in an inhomogeneous and fully anisotropic setting. We
address the challenges that come from the lacking of the growth condition and the
presence of lower order terms. The main difficulty lies in that there are no condi-
tions of doubling-type assumed for function M(x, ξ) as it was done in [13, 36]. It
complicates the understanding of the dual pairing since LM is not dual of LM∗ in
general. We consider (A2), which is a more general growth condition than those
employed in [15, 35, 36]. This essentially affects the derivation of a priori estimates.
The classical results are not applicable due to the generality of the situation con-
sidered, such as Sobolev embeddings or Rellich–Kondrachov compact embeddings.
There is no good embedding of fully anisotropic Musielak–Orlicz–Sobolev spaces
into Musielak–Orlicz spaces. The appearance of lower-order terms complicates the
analysis of the problem. This is particularly well visible in the identification of some
limits in our approximate procedure (step 5 of the proof of theorem 1.1), as well
as in the argumentation that the limit of the approximation shares properties of
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renormalized solutions (step 6). There are just a few results that deal with the
anisotropic problems with lower-order terms. We can only refer to [25, 36], but
they do not cover the generality of the problem. Moreover, unlike the operator
considered in [3, 54–56], we do not need the operator of the problem (1.1) to be
strictly monotone. Also, the low integrability of the right-hand terms leads to sig-
nificant difficulties in convergence studies. The set of smooth functions is not dense
in the norm topology in the general Orlicz–Sobolev spaces, so we need to impose a
balance condition, which can ensure the density of smooth functions in the related
Sobolev-type space.

This paper is organized as follows. In § 2, we state some basic results that will be
used later. We will prove the main results in § 3. Uniqueness of the renormalized
solution will be proved in § 4.

2. Preliminary lemmas

In this section, we introduce some fundamental definitions and auxiliary results.
By Ω we always mean a bounded domain of R

n with Lipschitz regular boundary.
If not specified, a constant C is a positive constant, possibly changing line by line.
By C∞

c (Ω) we mean the set of compactly supported smooth functions over Ω. We
begin with N -functions and the Musielak–Orlicz space setting.

Definition 2.1. A function M(x, ξ) : Ω × R
n → R is called an N -function if

• M is a Carathéodory function;

• M(x, 0) = 0 and ξ 	→ M(x, ξ) is a convex function with respect to ξ for a.a.
x ∈ Ω;

• M(x, ξ) = M(x, −ξ) for a.a. x ∈ Ω and all ξ ∈ R
n;

• there exist two convex functions m1, m2 : [0,∞) → [0,∞) such that

lim
s→0+

m1(s)
s

= 0 = lim
s→0+

m2(s)
s

and lim
s→∞

m1(s)
s

= ∞ = lim
s→∞

m2(s)
s

,

and for a.a. x ∈ Ω

m1(|ξ|) � M(x, ξ) � m2(|ξ|).

For an N -function we define the general Musielak–Orlicz class LM (Ω; Rn) as the
set of all measurable functions ξ(x) : Ω → R

n such that∫
Ω

M(x, ξ(x)) dx < ∞.

The Musielak–Orlicz space LM (Ω; Rn) is the smallest linear hull of LM (Ω; Rn)
equipped with the Luxemburg norm

‖ξ‖LM (Ω) = inf

{
λ > 0 :

∫
Ω

M

(
x,

ξ(x)
λ

)
dx � 1

}
.
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The space EM (Ω; Rn) is the closure in LM -norm of the set of bounded functions.
Equivalently, LM (Ω; Rn) and EM (Ω; Rn) are defined as sets of functions ξ : Ω → R

n

satisfying ∫
Ω

M(x, λξ(x)) dx < ∞

for some λ ∈ R and for every λ ∈ R, respectively [15, Lemma 3.1.8]. We also note
that (EM (Ω; Rn))∗ = LM∗(Ω; Rn) and (EM∗(Ω; Rn))∗ = LM (Ω; Rn) [15, Theorem
3.5.3] but no other duality relations are expected.

The complementary function to M is

M∗(x, η) := sup
ξ∈Rn

(ξ · η − M(x, ξ)).

If M is an N -function and M∗ is the complementary function to M , then the
following Fenchel–Young inequality is satisfied

|ξ · η| � M(x, ξ) + M∗(x, η) for all ξ, η ∈ R
n and a.e. x ∈ Ω.

Moreover, if M is an N -function and M∗ its complementary, then the generalized
Hölder inequality holds, e.g.∣∣∣∣∣

∫
Ω

ξ · η dx

∣∣∣∣∣ � 2‖ξ‖LM
‖η‖LM∗ for all ξ ∈ LM (Ω; Rn) and η ∈ LM∗(Ω; Rn).

We say that a sequence {ξn}∞n=1 ⊂ LM (Ω; Rn) converges modularly to ξ in
LM (Ω; Rn), if there exists λ > 0 such that

∫
Ω

M

(
x,

ξn − ξ

λ

)
dx → 0 as n → ∞.

For the notion of this convergence, we write ξn
M−→ ξ.

Then, we shall give some preliminary lemmas related to N -functions and
Musielak–Orlicz spaces.

Proposition 2.2 [9, Theorem 1]. Assume that Ω is a bounded Lipschitz domain
and M is an N -function which satisfies the balance condition (B). Then, for every
u ∈ V 1

0 LM (Ω) there exists a sequence {uδ}δ ⊂ C∞
c (Ω) such that

uδ −→ u in L1(Ω) and ∇uδ
M−→ ∇u in LM (Ω; Rn)

Furthermore, there exists a constant c = c(Ω), such that ||uδ||L∞(Ω) � c||u||L∞(Ω).

Lemma 2.3 de la Vallée Poussin theorem [15, Lemma 3.4.2]. Suppose M is an
N -function and let {ξn}n∈N be a sequence of measurable functions ξn : Ω → R

n

satisfying

sup
n∈N

∫
Ω

M(x, ξn(x)) dx < ∞.

Then the sequence {ξn}n∈N is uniformly integrable in L1(Ω).
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Lemma 2.4 [15, Lemma 3.1.14]. Let M be an N -function.

(1) If ξ ∈ LM (Ω; Rn) and ‖ξ‖LM
� 1, then

∫
Ω

M(x, ξ(x)) dx � ‖ξ‖LM
.

(2) If ξ ∈ LM (Ω; Rn) and ‖ξ‖LM
> 1, then

∫
Ω

M(x, ξ(x)) dx � ‖ξ‖LM
.

Lemma 2.5 [15, Lemma 3.8.2]. Suppose M is an N -function and A : Ω × R
n → R

n

satisfies (A1), (A2), (A3) and suppose ‖A(·, ξ) · ξ‖L1(Ω) � c̃. Then there exists a
constant C > 0 depending only on the parameters from (A1), (A2) and c̃ such that
‖A(·, ξ)‖LM∗ < C.

Next, we point out that the existence of weak solutions to the following problem
follows directly from [18, Theorem 1.1].

Proposition 2.6. Let Ω be a bounded Lipschitz domain in R
n. Suppose that an N -

function M is regular enough so that C∞
c (Ω) is dense in V 1

0 LM (Ω) in the modular
topology. Assume further that g ∈ L∞(Ω), F ∈ EM∗(Ω; Rn), function A satisfies
assumptions (A1), (A2) and (A3), Φ is a bounded and continuous function, and b
satisfies (b). Then there exists a weak solution to the problem{−div

(A(x,∇u) + Φ(u)
)

+ b(x, u) = g + div F in Ω,
u(x) = 0 on ∂Ω,

Namely, there exists a function u ∈ V 1
0 LM (Ω) satisfying∫

Ω

A(x,∇u) · ∇φ + Φ(u) · ∇φ + b(x, u)φ dx =
∫

Ω

gφ dx +
∫

Ω

F · ∇φ dx

for all φ ∈ V 1
0 LM (Ω) ∩ L∞(Ω).

In fact, for each g ∈ L∞(Ω), we know that there exists H : Ω → R
n, such that

g = div H and H ∈ EM∗(Ω; Rn). The fact one can take H ∈ EM∗(Ω; Rn) is a conse-
quence of properties of Bogovski operator. This is explained in [15, Remark 4.1.7]
with the use of [52, Lemma II.2.1.1].

Lemma 2.7 [15, Theorem 4.1.1]. Suppose A : Ω × R
n → R

n satisfies condition
(A1)–(A2) with an N -function M : Ω × R

n → [0, ∞). Moreover, assume that there
exist

α ∈ LM∗(Ω; Rn) and ξ ∈ LM (Ω; Rn)

such that ∫
Ω

(
α − A(x,η)

) · (ξ − η) dx � 0 for all η ∈ R
n.

Then

A(x, ξ) = α a.e. in Ω.
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Lemma 2.8 [15, Lemma 8.22]. Suppose zs
s→∞
⇀ z in L1(Ω) and ws, w ∈ L∞(Ω).

Assume further that there exists a constant C > 0 such that sups∈N ||ws||∞ < C

and ws
a.e.−−−→

s→∞ w. Then

lim
s→∞

∫
Ω

wszs dx =
∫

Ω

wz dx.

Young measures are now a standard tool for non-linear analysis. We will need
the following version of the generalized fundamental theorem on Young measures
from [15], where by M(Rn) we denote the space of bounded Radon measures. A
sequence {zj}j∈N of measurable function zj : Ω → R

n is said to satisfy the tightness
condition if

lim
R→∞

sup
j∈N

|{x : |zj(x)| � R}| = 0.

Lemma 2.9 Fundamental theorem for Young measures [15, Theorem 8.41].
Let Ω ⊂ R

n and zj : Ω → R
n be a sequence of measurable functions. Then there

exists a subsequence {zj} and a family of weakly-∗ measurable maps νx : Ω →
M(Rn), such that:

(1) νx � 0, ‖νx‖M(Rn) =
∫

Rn dνx � 1 for a.e. x ∈ Ω.

(2) For every f ∈ C0(Rn), we have f(zj)
∗
⇀ f̄ weakly-∗ in L∞(Ω). Moreover,

f̄ =
∫

Rn

f(λ) dνx(λ).

(3) Let K ⊂ R
n be compact and dist(zj , K) → 0 in measure, then supp vx ⊂ K.

(4) ‖νx‖M(Rn) = 1 for a.e. x ∈ Ω if and only if the tightness condition is satisfied.

(5) If the tightness condition is satisfied, E ⊂ Ω is measurable, f ∈ C(Rn), and
{f(zj)} is relatively weakly compact in L1(E), then

f(zj) ⇀ f̄ in L1(E) and f̄ =
∫

Rn

f(λ) dνx(λ).

The family of maps νx : Ω → M(Rn) is called the Young measure generated by {zj}.

Lemma 2.10 [45, Corollary 3.3]. zj : Ω → R
n generates the Young measure v, B :

Ω × R
n → R

+ is a Carathéodory function. Then

lim inf
j→∞

∫
Ω

B(x, zj(x)) dx �
∫

Ω

∫
Rn

B(x, λ)dvx(λ) dx.

Definition 2.11 Biting convergence [15, Definition 8.36]. Let fj , f ∈ L1(Ω) for
every j ∈ N. We say that a sequence {fj}j∈N converges in the sense of biting to

f in L1(Ω) (and denote it by fj
b−→ f), if there exists a sequence Ej of measurable

subsets of Ω such that lim
j→∞

|Ej | = 0 and for every j we have fj ⇀ f in L1(Ω \ Ej).
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Lemma 2.12 Chacon’s biting lemma [48, Lemma 6.6]. Let Ω ∈ R
n be a mea-

surable set and let the sequence {fj}∞j ⊂ L1(Ω) be bounded in L1(Ω). There exists
a subsequence of indices, still denoted by j, and a function f ∈ L1(Ω) such that
fj

b−→ f .

Lemma 2.13 [48, Lemma 6.9]. Let fj ∈ L1(Ω) for every j ∈ N, 0 � fj(x) for a.e.
x ∈ Ω. Moreover, suppose

fj
b−→ f and lim sup

j→∞

∫
Ω

fj dx �
∫

Ω

f dx.

Then

fj ⇀ f weakly in L1(Ω) for j → ∞.

3. Existence of renormalized solutions—main proof

Now, we are in the position to prove our main result. The whole proof is divided
into 6 steps. We begin with the existence of a solution to a problem with truncated
data, then we show a priori estimates and the energy control condition for solutions
to the problem. After that we focus on the most challenging part—passing to the
limit with the level of truncation. In the last step, we show that the function u that
we obtained as a weak limit, is in fact a renormalized solution. This is the place
where Young measures appear.

Proof of theorem 1.3. Step 1. Problems with truncated data.
The existence of a weak solution to the problem{−div

(A(x,∇u) + Φs(u)
)

+ b(x, u) = Ts(f) + div F in Ω,
u(x) = 0 on ∂Ω,

for every s > 0 is a consequence of proposition 2.6 with g = Ts(f), Φs(u) =
Φ(Ts(u)). Namely, there exists a function us ∈ V 1

0 LM (Ω) satisfying∫
Ω

A(x,∇us) · ∇φ + Φs(us) · ∇φ + b(x, us)φ dx =
∫

Ω

Ts(f)φ dx +
∫

Ω

F · ∇φ dx

(3.1)
for all φ ∈ V 1

0 LM (Ω) ∩ L∞(Ω).

Step 2. A priori estimates
We test the function (3.1) by Tk(us) to get∫

Ω

A(x,∇Tk(us)
) · ∇Tk(us) dx +

∫
Ω

Φ(Ts(us)) · ∇Tk(us) dx +
∫

Ω

b(x, us)Tk(us) dx

=
∫

Ω

Ts(f)Tk(us) + F∇Tk(us) dx.

Using condition (A2) we get an estimate

1
2

∫
Ω

M
(
x, cA1 ∇Tk(us)

)
dx � 1

2

∫
Ω

A
(
x,∇Tk(us)

) · ∇Tk(us) dx.
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Existence of renormalized solutions 11

Since Φ is continuous, we can apply the chain rule theorem for Sobolev functions.
We notice that there exists a function G : R → R

n such that G(0) = 0 and we have
div G(Tk(us)) = Φ(Tk(us)) · ∇Tk(us). Therefore, the Gauss–Green theorem yields:

∫
Ω

Φ(Tk(us)) · ∇Tk(us) dx = 0.

Moreover, the Fenchel–Young inequality and the definition of N functions allow us
to infer that∫

Ω

4
cA1

F · cA1
4
∇Tk(us)dx �

∫
Ω

M

(
x,

cA1
4
∇Tk(us)

)
dx +

∫
Ω

M∗
(

x,
4
cA1

F

)
dx

� 1
4

∫
Ω

M
(
x, cA1 ∇Tk(us)

)
dx +

∫
Ω

M∗
(

x,
4
cA1

F

)
dx.

And thus, according to M(x, ξ) � 0 for almost every x ∈ Ω and every ξ ∈ R
n,

b(x, us)Tk(us) � 0 as b satisfies condition (b), we have

1
4

∫
Ω

M
(
x, cA1 ∇Tk(us)

)
dx +

1
2

∫
Ω

A(x,∇Tk(us)
) · ∇Tk(us) dx

�
∫

Ω

M∗
(

x,
4
cA1

F

)
+ k‖f‖L1(Ω).

Since F ∈ EM∗(Ω) by assumption, the right-hand side of the latter inequality is
finite and we infer that∫

Ω

A(x,∇Tk(us)
) · ∇Tk(us) dx � C

and ∫
Ω

M(x, cA1 ∇Tk(us)) dx � C.

Furthermore, by lemmas 2.4 and 2.5, we have

‖∇Tk(us)‖LM
� 1

cA1

(∫
Ω

M
(
x, cA1 ∇Tk(us)

)
dx + 1

)
� C (3.2)

and

‖A(·,∇Tk(us))‖LM∗ � C, (3.3)

where C is independent of s. �

Step 3. Energy control.
Now we will show that for every weak solution us to (3.1) there exists a γ :

[0, ∞) → [0, ∞) independent of s and l such that limt→0 γ(t) = 0 and for every
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12 B. Budnarowski and Y. Li

l > 0 ∫
{l<|us|<l+1}

A(x,∇us) · ∇us dx � γ

(
l

m1(c1l)

)
(3.4)

for some c1 = c1(Ω) > 0, where m1 is the minorant of M in the definition of an
N -function.

Considering properties of truncations, we infer
∫
{l<|us|<l+1}

A(x,∇us) · ∇us dx =
∫
{l<|us|<l+1}

A(x,∇Tl+1(us)
) · ∇Tl+1(us) dx

=
∫

Ω

A(x,∇us) · ∇
(
Tl+1(us) − Tl(us)

)
dx.

(3.5)
Testing (3.1) by (Tl+1(us) − Tl(us)) , we have

∫
{l<|us|<l+1}

A(x,∇Tl+1(us)
) · ∇Tl+1(us) dx +

∫
{l<|us|<l+1}

Φs(us) · ∇Tl+1(us) dx

+
∫
{l�|us|}

b(x, us)
(
Tl+1(us) − Tl(us)

)
dx

=
∫

Ω

A(x,∇us) · ∇
(
Tl+1(us) −Tl(us)

)
dx +

∫
Ω

Φs(us) · ∇
(
Tl+1(us) − Tl(us)

)
dx

+
∫

Ω

b(x, us)
(
Tl+1(us) − Tl(us)

)
dx

=
∫

Ω

Ts(f)
(
Tl+1(us) − Tl(us)

)
dx +

∫
Ω

F∇(Tl+1(us) − Tl(us)
)
dx

�
∫
{|us|�l}

|f |dx +
∫
{l�|us|<l+1}

F∇Tl+1(us) dx.

Since
∫
Ω

Φs(us) · ∇(Tl+1(us) − Tl(us)) dx = 0 and the term involving function b
can be dropped as it is non-negative, we get

∫
{l<|us|<l+1}

A(x,∇Tl+1(us)) · ∇Tl+1(uS) dx �
∫
{l�|us|}

|f |dx

+
∫
{l�|us|<l+1}

F∇Tl+1(us) dx.

Moreover,
∫
{l�|us|<l+1}

F∇Tl+1(us) dx � 1
4

∫
{l�|us|<l+1}

M
(
x, cA1 ∇Tl+1(us)

)
dx

+
∫
{l�|us|<l+1}

M∗
(

x,
4
cA1

F

)
dx.
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Therefore, we have

1
4

∫
{l<|us|<l+1}

M
(
x, cA1 ∇Tl+1(us)

)
dx +

1
2

∫
{l<|us|<l+1}

A(x,∇us) · ∇us dx

�
∫
{l�|us|}

|f |dx +
∫
{l�|us|}

M∗
(

x,
4
cA1

F

)
dx.

(3.6)

We want to estimate the right-hand side of (3.6). To do so, we must find some
control over the measure of the set {|us| � l}, which is the domain of integration.
Note that for m1 we obtain

|{|us| � l}| = |{|Tl(us)| = l}| = |{|Tl(us)| � l}| =
∣∣{m1

(
c1|Tl(us)|

)
� m1(c1l)

}∣∣.
Applying the Chebyshev inequality [8, Theorem 2.5.3], the modular Poincaré
inequality [15, Theorem 9.3 ] involving m1 and using the fact it is a convex minorant
of M , we arrive at

|{|us| � l}| �
∫

Ω

m1

(
c1|Tl(us)|

)
m1(c1l)

dx

� c2

m1(c1l)

∫
Ω

m1

(∣∣cA1 ∇Tl(us)
∣∣) dx

� c2

m1(c1l)

∫
Ω

M
(
x, cA1 ∇Tl(us)

)
dx

� C
l

m1(c1l)
.

(3.7)

Since m1 is an N -function, it is superlinear at infinity. Hence the right-hand side of
the inequality above vanishes when l → ∞. As a result, there exists γ : [0, ∞) →
[0, ∞) independent of s and l, such that limt→0 γ(t) = 0 and we have

∫
A

M∗
(

x,
4
cA1

F

)
+ |f |dx � 1

2
γ(|A|).

Thanks to (3.7), we get

∫
{l�|us|}

M∗
(

x,
4
cA1

F

)
+ |f |dx � 1

2
γ

(
l

m1(c1l)

)
. (3.8)

Combining this with (3.6) we arrive at the claim, which is

∫
{l<|us|<l+1}

A(x,∇us) · ∇us dx � γ

(
l

m1(c1l)

)
.
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14 B. Budnarowski and Y. Li

Step 4. Convergence of trucations.
In this part of the proof, we would like to show that there exists a subsequence

of {us}s>0 which has a limit u : Ω → R in the sense that

us −−−→
s→∞ u a.e. in Ω (3.9)

such that Tk(u) ∈ V 1
0 LM (Ω) for every k > 0 and also

|{|u| > l}| −−−→
l→∞

0. (3.10)

For every k ∈ N, passing with s → ∞ we have

Tk(us) → Tk(u)strongly in L1(Ω),

∇Tk(us) ⇀ ∇Tk(u)weakly in L1(Ω; Rn),

∇Tk(us)
∗
⇀ ∇Tk(u)weakly − ∗ in LM (Ω; Rn),

A(x,∇Tk(us))
∗
⇀ Akweakly- ∗ in LM∗(Ω; Rn)

(3.11)

for some Ak ∈ LM∗(Ω; Rn).
Fix k ∈ N. We have already proven the following a priori estimate (3.2), namely

‖∇Tk(us)‖LM
� C.

Using the Banach–Alaoglu theorem [11, Corollary 3.30] we infer that the sequence
{∇Tk(us)}s>0 is weakly-∗ compact in LM (Ω; Rn). The fact that M is an N -
function together with lemma 2.3 imply that {∇Tk(us)}s>0 is uniformly integrable
L1(Ω; Rn). The Dunford–Pettis theorem [11, Theorem 4.30], i.e.

{fn}n is uniformly integrable in L1(Ω) ⇔ {fn}n

is relatively compact in the weak topology,

implies that for every k ∈ N the sequence {∇Tk(us)}s>0 is relatively compact in
the weak topology of L1(Ω; Rn). As the set Ω is bounded, the Rellich–Kondrachov
theorem [11, Theorem 9.16] for W 1,1(Ω) yields uniform integrability of the sequence
{Tk(us)}s>0 in the space L1(Ω). Hence, there exists a function u such that

Tk(us) → Tk(u) strongly in L1(Ω),

∇Tk(us) ⇀ ∇Tk(u) weakly in L1(Ω; Rn).

Thus, up to a subsequence, we have us → u in measure and almost everywhere,
which gives (3.9). Additionally, the Dunford–Pettis theorem together with (3.2)
imply that, up to a subsequence, we have

∇Tk(us)
∗
⇀ ∇Tk(u) weakly- ∗ in LM (Ω; Rn). (3.12)

Since us → u in measure, using (3.7) we obtain (3.10).
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Now we focus on the last convergence in (3.11). For every k ∈ N we define

As,k = A(x,∇Tk(us)).

Using the other a priori estimate (3.3) and repeating the arguments from above we
infer that, up to a subsequence, there exists Ak ∈ LM∗(Ω; Rn) such that

As,k
∗
⇀ Ak weakly- ∗ in LM∗(Ω; Rn). (3.13)

Step 5. Identification of the limit of A(x, ∇Tk(us(x))).
We want to show that our limit obtained above in (3.13) is precisely of the form

Ak = A(x,∇Tk(u)) a.e. in Ω. (3.14)

We are going to prove it via monotonicity trick. To use it, we must first show that∫
Ω

(Ak −A(x, η)) · (∇Tk(u) − η) dx � 0 for every η ∈ R
n. (3.15)

We begin with showing that

lim sup
s→∞

∫
Ω

As,k · ∇Tk(us) dx =
∫

Ω

Ak · ∇Tk(u) dx. (3.16)

Firstly, we consider a function Ψl : R → [0, 1] defined as

Ψl(r) = min{(l + 1 − |r|)+, 1} (3.17)

and using proposition 2.2, we can take an approximate sequence {∇(Tk(u))δ}δ of
smooth functions such that

∇(Tk(u))δ
M−−−→

δ→0
∇Tk(u) modularly in LM (Ω; Rn).

Having this in mind, we will show that

lim
δ→0

lim sup
s→∞

∫
Ω

As,k · ∇(Tk(us) − (Tk(u))δ

)
dx = 0. (3.18)

The condition (A2) for the operator A implies A(x, 0) = 0. Hence, for l � k this
observation yields∫

Ω

As,k · ∇(Tk(us) − (Tk(u))δ

)
Ψl(us) dx

=
∫

Ω

As,k · ∇(Tk(us) − (Tk(u))δ

)
dx

+
∫
{|us|>l}

A(x, 0) · ∇(0 − (Tk(u))δ

)
(Ψl(us) − 1) dx

=
∫

Ω

As,k · ∇(Tk(us) − (Tk(u))δ

)
dx.
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16 B. Budnarowski and Y. Li

Therefore, (3.18) is equivalent to

lim
l→∞

lim
δ→0

lim sup
s→∞

∫
Ω

As,k · ∇(Tk(us) − (Tk(u))δ

)
Ψl(us) dx = 0. (3.19)

Now we notice that it is enough to have

lim
l→∞

lim
δ→0

lim sup
s→∞

∫
Ω

As,l+1 · ∇
(
Tk(us) − (Tk(u))δ

)
Ψl(us) dx = 0. (3.20)

Indeed, having this result, (3.19) will be satisfied if we manage to prove that for
l � k,

J : =
∫

Ω

(As,k −As,l+1

) · ∇(Tk(us) − (Tk(u))δ

)
Ψl(us) dx

=
∫

Ω

(As,l+1 −A(x, 0)
) · ∇(Tk(u))δ1{k<|us|}Ψl(us) dx

=
∫

Ω

As,l+1 · ∇(Tk(u))δ1{k<|us|}Ψl(us) dx

tends to zero as s → ∞ and δ → 0. In order to do so, we just need to prove that

lim
δ→0

lim sup
s→∞

|J | � lim
δ→0

lim sup
s→∞

∫
Ω

|As,l+1|1{k<|us|}Ψl(us)|∇(Tk(u))δ|dx

� lim
δ→0

∫
Ω

|Al+1|1{k<|u|}Ψl(u)|∇(Tk(u))δ|dx

=
∫

Ω

|Al+1|1{k<|u|}Ψl(u)|∇Tk(u)|dx = 0.

(3.21)

For the limit as s → ∞ we will use lemma 2.8 with

zs := |As,l+1| · |∇(Tk(u))δ| s→∞
⇀ |Al+1| · |∇(Tk(u))δ| = z weakly in L1(Ω)

and ws = Ψl(us)1{k<|us|}. The convergence zs ⇀ z in L1(Ω) is a consequence of
(3.13). And (3.9) gives us that ws → w = Ψl(u)1{k<|us|} a.e. in Ω. The external
limit with δ → 0 arises from modular convergence in (3.21). In addition, since we
have

∇Tk(u)1{k<|u} = 0,

the last equality in (3.21) follows.
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Now, to obtain (3.20), we test (3.1) by the sequence

ϕ := Ψl(us)
(
Tk(us) − (Tk(u))δ

)
,

where Ψl is defined in (3.17). Thus, we have

∫
Ω

A(x,∇us) · ∇
(
Ψl(us)(Tk(us) − (Tk(u))δ)

)
dx

+
∫

Ω

Φs(us) · ∇
(
Ψl(us)(Tk(us) − (Tk(u))δ)

)
dx

+
∫

Ω

b(x, us)Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx

=
∫

Ω

Ts(f)Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx

+
∫

Ω

F · ∇(Ψl(us)(Tk(us) − (Tk(u))δ)
)
dx.

(3.22)

Firstly, we consider the first term in the right-hand side of (3.22). Since we know
that

us −→ u a.e. in Ω,

we would like to use the Lebesgue-dominated convergence theorem. To do so, we
note that

lim
δ→0

lim
s→∞

∣∣∣∣∣
∫

Ω

Ts(f)Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx

∣∣∣∣∣
� lim

δ→0
lim

s→∞

∫
Ω

∣∣Ts(f)
∣∣Ψl(us)

∣∣(Tk(us) − Tk(u)
)∣∣dx

+ lim
δ→0

lim
s→∞

∫
Ω

∣∣Ts(f)
∣∣Ψl(us)

∣∣(Tk(u) − (Tk(u))δ

)∣∣ dx

� lim
δ→0

lim
s→∞

∫
Ω

2k|f |dx + lim
δ→0

lim
s→∞

∫
Ω

|f | · |Tk(u) − (Tk(u))δ|dx

= 2k||f ||L1(Ω) + lim
δ→0

∫
Ω

|f | · |Tk(u) − (Tk(u))δ|dx.

Using the modular approximation result (see proposition 2.2) we get |(Tk(u))δ| �
ck, which implies

|Tk(u) − (Tk(u))δ| � (1 + c)k. (3.23)

Thus, we infer that

lim
l→∞

lim
δ→0

lim sup
s→∞

∫
Ω

Ts(f)Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx = 0. (3.24)

https://doi.org/10.1017/prm.2023.113 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.113


18 B. Budnarowski and Y. Li

Secondly, for the second term in the right-hand side of (3.22), we define∫
Ω

F · ∇(Ψl(us)(Tk(us) − (Tk(u))δ)
)
dx

=
∫

Ω

F · ∇Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx +

∫
Ω

F · Ψl(us)∇Tk(us) dx

−
∫

Ω

F · Ψl(us)∇(Tk(u))δ dx

=: h1 + h2 − h3.

Thanks to the Fenchel–Young inequality and (3.23), we get

lim
l→∞

lim
δ→0

lim sup
s→∞

|h1|

= lim
l→∞

lim
δ→0

lim sup
s→∞

∣∣ ∫
Ω

F · ∇Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx
∣∣

� C lim
l→∞

lim
δ→0

lim sup
s→∞

∫
{l�|us|�l+1}

∣∣F · ∇Tl+1(us)
∣∣ dx

� C lim
l→∞

lim sup
s→∞

(∫
{l<|us|<l+1}

1
4
M
(
x, cA1 ∇Tl+1(us)

)
dx

+
∫
{l<|us|<l+1}

M∗
(

x,
4
cA1

F

)
dx

)

� C lim
l→∞

γ

(
l

m1(c1l)

)
= 0.

(3.25)

where in the last line we use (3.4), (3.8) and the fact that m1 is superlinear at
infinity as an N -function. Note that

∇Tk(us)
s→∞
⇀ ∇Tk(u) weakly in L1(Ω; Rn),

combining with the fact∫
Ω

|F∇Tk(us)|dx �
∫

Ω

M∗
(

x,
1
cA1

F

)
dx +

∫
Ω

M(x, cA1 ∇Tl+1(us)) dx

� C,

where C is independent of s, we deduce that

F∇Tk(us)
s→∞
⇀ F∇Tk(u) weakly in L1(Ω).

Recall that |Ψl(us)| � 1 and Ψl(us)
a.e.−−−→

s→∞ Ψl(u), it follows from lemma 2.8 that

lim
s→∞

∫
Ω

FΨl(us)∇Tk(us) dx =
∫

Ω

FΨl(u)∇Tk(u) dx.
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Notice that by definition of the function Ψl (see (3.17)), we have

Ψl(u) l→∞−−−→ 1 a.e. in Ω. (3.26)

Thus, collecting all the facts mentioned above and using the Lebesgue-dominated
convergence theorem we infer that

lim
l→∞

lim
s→∞h2 = lim

l→∞
lim

s→∞

∫
Ω

F · Ψl(us)∇Tk(us) dx

= lim
l→∞

∫
Ω

F · Ψl(u)∇Tk(u) dx

=
∫

Ω

F · ∇Tk(u) dx.

Additionally, by the Lebesgue-dominated convergence theorem and the fact
∇(Tk(u))δ → ∇Tk(u) modularly in LM (Ω; Rn), we see that

lim
l→∞

lim
δ→0

lim
s→∞h3 = lim

l→∞
lim
δ→0

lim
s→∞

∫
Ω

F · Ψl(us)∇(Tk(u))δ dx

= lim
l→∞

lim
δ→0

∫
Ω

F · Ψl(u)∇(Tk(u))δ dx.

=
∫

Ω

F · ∇Tk(u) dx.

All in all, we conclude that

lim
l→∞

lim
δ→0

lim sup
s→∞

∫
Ω

F · ∇(Ψl(us)(Tk(us) − (Tk(u))δ)
)
dx

= lim
l→∞

lim
δ→0

lim sup
s→∞

(
h1 + h2 − h3

)
= 0.

(3.27)

Now, we will focus on the left-hand side of (3.22). Let us denote∫
Ω

A(x,∇us) · ∇
(
Ψl(us)(Tk(us) − (Tk(u))δ)

)
dx

+
∫

Ω

Φs(us) · ∇
(
Ψl(us)(Tk(us) − (Tk(u))δ)

)
dx

+
∫

Ω

b(x, us)Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx

=: I1 + I2 + I3.

(3.28)

At first we concentrate on the easier terms. We are going to show that both

lim
δ→0

lim
s→∞(I2) = 0 and lim

δ→0
lim

s→∞(I3) = 0.

Indeed, for I3 we have

I3 =
∫

Ω

b(x, Tl+1(us))Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx,

https://doi.org/10.1017/prm.2023.113 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.113


20 B. Budnarowski and Y. Li

due to the definition of the function Ψl (see (3.17)). Thanks to the assumption (b),
we know that b(·, s) ∈ L1(Ω) for each s ∈ R. This fact, together with (3.23) yields

lim
δ→0

lim
s→∞ |I3| = lim

δ→0
lim

s→∞

∣∣∣∣∣
∫

Ω

b(x, Tl+1(us))Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx

∣∣∣∣∣
� lim

δ→0
lim

s→∞

∫
Ω

|b(x, Tl+1(us))|Ψl(us)
∣∣Tk(us) − Tk(u)

∣∣ dx

+ lim
δ→0

lim
s→∞

∫
Ω

|b(x, Tl+1(us))|Ψl(us)
∣∣Tk(u) − (Tk(u))δ

∣∣dx

=: I1
3 + I2

3 .

(3.29)

Now, from the Lebesgue-dominated convergence theorem we have

lim
δ→0

lim
s→∞(I1

3 ) = lim
δ→0

lim
s→∞(I2

3 ) = 0.

To justify the convergence of I2, note that by definition of Ψl and the chain rule
we can also rewrite it as

I2 =
∫

Ω

Φ(Ts(us)) · ∇
(
Tk(us) − (Tk(u))δ

)
Ψl(us) dx

+
∫

Ω

Φ(Ts(us)) · ∇Ψl(us)(Tk(us) − (Tk(u))δ) dx

=: I1
2 + I2

2 .

For s � l + 1, we have

I1
2 =

∫
Ω

Φ(Tl+1(us)) · ∇
(
Tk(us) − (Tk(u))δ

)
Ψl(us) dx.

Since Φ is continuous and us → u almost everywhere in Ω, we obtain

Ψl(us)Φ(Tl+1(us)) → Ψl(u)Φ(Tl+1(u)) a.e. in Ω.

As Φ(Tl+1(us)) is uniformly bounded with respect to s, i.e.

‖Φ(Tl+1(us))‖L∞(Ω;Rn) � sup
τ∈[−l−1,l+1]

|Φ(τ)| < C,

where the constant C > 0 is independent of s ∈ N and as the following facts

|Ψl(us)| � 1 a.e. in Ω,

∇Tk(us) ⇀ ∇Tk(u)weakly in L1(Ω; Rn),

∇(Tk(u))δ
M−−−→

δ→0
∇Tk(u)modularly in LM (Ω; Rn),

it follows from lemma 2.8 that

lim
δ→0

lim sup
s→∞

I1
2 = 0.
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Let us write

I2
2 =

∫
Ω

div

(∫ Tl+1(us)

0

Φ(r)Ψ′
l(r) dr

)(
Tk(us) − (Tk(u))δ

)
dx,

we may use the Gauss–Green theorem and obtain

I2
2 = −

∫
Ω

∫ Tl+1(us)

0

Φ(r)Ψ′
l(r) dr · ∇(Tk(us) − (Tk(u))δ

)
dx.

Using the same arguments as above, we infer that

lim
δ→0

lim sup
s→∞

I2
2 = 0.

Therefore, we have

lim
l→∞

lim
δ→0

lim sup
s→∞

I2 = 0.

Finally, we will concentrate on the most challenging and difficult term I1. As before,
we rewrite it as follows:

I1 =
∫

Ω

A(x,∇us) · ∇
(

Ψl(us)(Tk(us) − (Tk(u))δ)

)
dx

=
∫

Ω

A(x,∇us) · ∇Ψl(us)
(
Tk(us) − (Tk(u))δ

)
dx

+
∫

Ω

A(x,∇us) · ∇
(
Tk(us) − (Tk(u))δ

)
Ψl(us) dx

=: I1
1 + I2

1 .

(3.30)

To estimate I1
1 , we will use (3.23) and (3.4) to get

lim
l→∞

lim
δ→0

lim sup
s→∞

|I1
1 |

� lim
l→∞

(
lim
δ→0

lim sup
s→∞

∫
{l<|us|<l+1}

∣∣A(x,∇us) · ∇us

∣∣∣∣(Tk(us) − (Tk(u))δ

)∣∣ dx

)

� C lim
l→∞

(
lim
δ→0

lim sup
s→∞

∫
{l<|us|<l+1}

∣∣A(x,∇us) · ∇us

∣∣dx

)

= C lim
l→∞

(
lim sup

s→∞

∫
{l<|us|<l+1}

A(x,∇us) · ∇us dx

)

� C lim
l→∞

γ

(
l

m1(c1l)

)
= 0.
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Now we notice that (3.30) yields

lim
l→∞

lim
δ→0

lim sup
s→∞

(
I2
1

)
= lim

l→∞
lim
δ→0

lim sup
s→∞

∫
Ω

A(x,∇us) · ∇
(
Tk(us) − (Tk(u))δ

)
Ψl(us) dx = 0.

(3.31)
Hence, by virtue of all the above limits, (3.31) is actually equivalent to (3.20). Thus,
we arrive at (3.18). According to (3.18) and (3.13), we obtain

lim
δ→0

lim sup
s→∞

∫
Ω

As,k · ∇Tk(us) dx = lim
δ→0

lim sup
s→∞

∫
Ω

As,k · ∇(Tk(u)
)
δ
dx

= lim
δ→0

∫
Ω

Ak · ∇(Tk(u)
)
δ
dx

=
∫

Ω

Ak · ∇Tk(u) dx.

(3.32)

Eventually, we get (3.16).
We are about to complete the proof of identification of the limit of {As,k}s>0.

Using the monotonicity of A (condition (A3)) we infer that for every η ∈ L∞(Ω; Rn)
we have∫

Ω

As,k · η dx +
∫

Ω

A(x, η) · (∇Tk(us) − η) dx �
∫

Ω

As,k · ∇Tk(us) dx. (3.33)

Because of (3.12), (3.13) and (3.16), we may take the upper limit with s → ∞ of
both sides of (3.33) to get∫

Ω

Ak · η dx +
∫

Ω

A(x, η) · (∇Tk(u) − η) dx �
∫

Ω

Ak · ∇Tk(u) dx,

which, by rearranging terms is obviously equivalent to (3.15). Hence, we may apply
the famous monotonicity trick (lemma 2.7), which ends the proof of this step.

Step 6. Renormalized solutions
Now our goal is to show the existence of renormalized solutions, which will end

the proof of theorem 1.3. In fact, we are going to show that the function u, obtained
as a limit in step 4 is precisely the renormalized solution. By definition, we must
check whether the three conditions (R1), (R2) and (R3) are satisfied.

Condition (R1).
We just notice that thanks to the convergence in (3.11), condition (R1) is satisfied.

Condition (R2).
As we know that Tk(u) ∈ V 1

0 LM (Ω), proposition 2.2 yields existence of a sequence
{ur}r>0 ⊂ C∞

c (Ω) for which we have

ur −→ u a.e. in Ω,

∇Tk(ur)
∗
⇀ ∇Tk(u)weakly-∗ in LM (Ω; Rn),

∇h(ur) ⇀ ∇h(u)weakly in LM (Ω; Rn),

(3.34)
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for an arbitrary function h ∈ C1
c (Ω). Now, for such a fixed h and φ ∈ W 1,∞

0 (Ω) we
test (3.1) by Ψl(us)h(ur)φ, where Ψl defined in (3.17). Therefore, we get∫

Ω

A(x,∇us) · ∇
(
Ψl(us)h(ur)φ

)
dx +

∫
Ω

Φs(us) · ∇
(
Ψl(us)h(ur)φ

)
dx

+
∫

Ω

b(x, us)Ψl(us)h(ur)φ dx

=
∫

Ω

Ts(f)Ψl(us)h(ur)φ dx +
∫

Ω

F · ∇(Ψl(us)h(ur)φ
)
dx.

(3.35)

Let us denote the terms on the left-hand side of the equation above as L1
s,r,l, L2

s,r,l

and L3
s,r,l respectively. Also, write

L1
s,r,l + L2

s,r,l + L3
s,r,l = R1

s,r,l + R2
s,r,l,

where R1
s,r,l, R2

s,r,l stand for the right-hand side of (3.35) respectively.
At first, we see that by the Lebesgue-dominated convergence theorem, we get

lim
l→∞

lim
r→∞ lim

s→∞R1
s,r,l =

∫
Ω

fh(u)φ dx.

For the second term in the right-hand side of (3.35), we can write

R2
s,r,l =

∫
Ω

F · ∇(Ψl(us)h(ur)φ
)
dx

=
∫

Ω

F · ∇(Ψl(us)
)
h(ur)φ dx +

∫
Ω

F · ∇(h(ur)φ
)
Ψl(us) dx.

By the similar arguments to (3.25), we have

lim
l→∞

lim
r→∞ lim sup

s→∞

∣∣ ∫
Ω

F · ∇(Ψl(us)
)
h(ur)φ dx

∣∣
� ‖h‖L∞(Ω)‖φ‖L∞(Ω) lim

l→∞
lim sup

s→∞

∫
{l�us�l+1}

|F | · |∇Tl+1(us)|dx

� C lim
l→∞

γ

(
l

m1(c1l)

)
= 0.

Moreover, since F ∈ EM∗(Ω; Rn) ⊆ L1(Ω; Rn), Ψl(us) converges to Ψl(u) a.e. in Ω
with |Ψl(us)| � 1, the product sequence FΨl(us) also converges strongly to FΨl(u)
in L1(Ω; Rn) as s → ∞. Combining with the following facts

∇(h(ur)φ) ∈ L∞(Ω; Rn), ∇(h(ur)φ
) ∗

⇀ ∇(h(u)φ
)

weakly-* in LM (Ω; Rn),

we deduced that

lim
r→∞ lim

s→∞

∫
Ω

FΨl(us) · ∇
(
h(ur)φ

)
dx = lim

r→∞

∫
Ω

FΨl(u) · ∇(h(ur)φ
)
dx

=
∫

Ω

FΨl(u) · ∇(h(u)φ
)
dx.
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Notice that there exists m > 0 such that supp(h) ⊂ [−m, m]. Choosing such m, we
may interchange Tl+1 with Tm. Then Ψl(u) = Ψl(Tm(u)) = 1 for l > m. Thus, we
have

lim
l→∞

lim
r→∞ lim

s→∞R2
s,r,l = lim

l→∞

∫
Ω

FΨl(u)∇(h(u)φ
)
dx

=
∫

Ω

F∇(h(u)φ
)
dx.

Next, we concentrate on the left-hand side of (3.35).
Firstly, we look at the term L3

s,r,l. Thanks to assumption (b), we obtained that
b(x, Tl+1(us)) → b(x, Tl+1(u)) almost everywhere in Ω, and {b(·, Tl+1(us)} is uni-
formly integrable. As Ω has a finite measure, by Vitali convergence theorem, we
have

b
(·, Tl+1(us)

)→ b
(·, Tl+1(u)

)
in L1(Ω).

This combined with the facts that Ψl(us) converges to Ψl(u) a.e. in Ω and |Ψl(us)| �
1, imply that the product sequence b(x, us)Ψl(us) = b(x, Tl+1(us))Ψl(us) also con-
verges strongly to b(x, u)Ψl(u) = b(x, Tl+1(u))Ψl(u) in L1(Ω). Since the term
h(ur)φ is bounded, we obtain

lim
s→∞

∫
Ω

b(x, us)Ψl(us)h(ur)φ dx =
∫

Ω

b(x, u)Ψl(u)h(ur)φ dx.

Moreover, h(ur) −→ h(u) a.e. in Ω, which leads us to

lim
r→∞

∫
Ω

b(x, u)Ψl(u)h(ur)φ dx =
∫

Ω

b(x, u)Ψl(u)h(u)φ dx.

For l � m, where m is such that supp(h) ⊂ [−m, m], we infer that

lim
l→∞

lim
r→∞ lim

s→∞L3
s,r,l =

∫
Ω

b(x, u)h(u)φ dx.

Secondly, for the term L2
s,r,l, choosing s � l + 1, we can rewrite it as follows

L2
s,r,l =

∫
Ω

Φ(Tl+1(us)) · ∇
(
h(ur)φ

)
Ψl(us) dx

+
∫

Ω

Φ(Tl+1(us)) · Ψ′
l(us)∇Tl+1(us)(h(ur)φ) dx

=: L2,1
s,r,l + L2,2

s,r,l.

(3.36)

As Φ(Tl+1(us))Ψl(us) is uniformly bounded, the a.e. convergence of {us}s>0 and the
Vitali theorem provide that Φ(Tl+1(us))Ψl(us) → Φ(Tl+1(u))Ψl(u) in L1(Ω; Rn),
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thus

lim
s→∞

∫
Ω

Φ(Tl+1(us)) · ∇
(
h(ur)φ

)
Ψl(us) dx =

∫
Ω

Φ(Tl+1(u)) · ∇(h(ur)φ
)
Ψl(u) dx.

Since ∇(h(ur)φ) ∗
⇀ ∇(h(u)φ) in LM (Ω; Rn) and Φ is Lipschitz continuous, we find

that

lim
r→∞

∫
Ω

Φ(Tl+1(u)) · ∇(h(ur)φ
)
Ψl(u) dx =

∫
Ω

Φ(Tl+1(u)) · ∇(h(u)φ
)
Ψl(u) dx.

(3.37)
For l � m, where m is such that supp(h) ⊂ [−m, m]. Rewriting (3.37), we arrive at

lim
l→∞

lim
r→∞ lim

s→∞L2,1
s,r,l =

∫
Ω

Φ(u) · ∇(h(u)φ) dx.

Now we concentrate on the second term from (3.36). Again, similarly as before we
may rewrite it as follows

L2,2
s,r,l =

∫
Ω

div

(∫ Tl+1(us)

0

Φ(t)Ψ′
l(t) dt

)
h(ur)φ dx.

and using the Gauss–Green theorem, we obtain

L2,2
s,r,l = −

∫
Ω

∫ Tl+1(us)

0

Φ(t)Ψ′
l(t) dt · ∇(h(ur)φ) dx.

For the limit with s → ∞, we observe that

∣∣L2,2
s,r,l

∣∣ =
∣∣∣∣∣
∫

Ω

∫ Tl+1(us)

0

Φ(t)Ψ′
l(t) dt · ∇(h(ur)φ) dx

∣∣∣∣∣
�
∫

Ω

∣∣∣∣∣
∫ Tl+1(us)

0

Φ(t)Ψ′
l(t) dt · ∇(h(ur)φ)

∣∣∣∣∣ dx

�
∫

Ω

∣∣∣∣∣
∫ Tl+1(us)

0

Φ(t)Ψ′
l(t) dt

∣∣∣∣∣ ·
∣∣∇(h(ur)φ)

∣∣ dx

�
∫

Ω

√
n

(
sup

i∈{1,...,n}

∣∣∣∣∣
∫ Tl+1(us)

0

Φi(t)Ψ′
l(t) dt

∣∣∣∣∣
)

· ∣∣∇(h(ur)φ)
∣∣ dx

�
∫

Ω

2
√

n(l + 1)

(
sup

i∈{1,...,n}
sup

y∈[−l−1,l+1]

|Φi(y)|
)

· ∣∣∇(h(ur)φ)
∣∣ dx.

Since the term ∇(h(ur)φ) is bounded, Φ = (Φ1, Φ2, . . . Φn) is Lipschitz and us → u
almost everywhere in Ω, by the Lebesgue-dominated convergence theorem, we infer
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that

lim
s→∞L2,2

s,r,l = −
∫

Ω

∫ Tl+1(u)

0

Φ(t)Ψ′
l(t) dt · ∇(h(ur)φ) dx

=
∫

Ω

Φ(Tl+1(u)) · ∇Tl+1(u)Ψ′
l(u)(h(ur)φ) dx.

Using the Lebesgue-dominated convergence theorem again, we obtain

lim
r→∞

∫
Ω

Φ(Tl+1(u)) · ∇Tl+1(u)Ψ′
l(u)(h(ur)φ) dx

=
∫

Ω

Φ(Tl+1(u)) · ∇Tl+1(u)Ψ′
l(u)(h(u)φ) dx.

(3.38)

For m > 0 such that supp(h) ⊂ [−m, m], Tl+1 can be replaced by Tm in (3.38) and
Ψ′

l(u) = Ψ′
l(Tm(u)) = 0 for l > m. Rewriting (3.38), we arrive at

lim
l→∞

lim
r→∞ lim

s→∞L2,2
s,r,l = 0.

Finally, we focus on the most important term, which is L1
s,r,l. Let us write

L1
s,r,l =

∫
Ω

A(x,∇us) · ∇Ψl(us)h(ur)φ dx

+
∫

Ω

A(x,∇us) · ∇
(
h(ur)φ

)
Ψl(us) dx

=: L1,1
s,r,l + L1,2

s,r,l.

Convergence of the first term is quite straightforward, namely

lim
l→∞

lim
r→∞ lim sup

s→∞

∣∣L1.1
s,r,l

∣∣
� ||h||L∞(Ω)||φ||L∞(Ω) lim

l→∞
lim

r→∞

(
sup
s>0

∫
{l<|us|<l+1}

As,l+1(x) · ∇Tl+1(us) dx

)

� C lim
l→∞

γ

(
l

m(c1l)

)

= 0,

where in the last inequality, we used the energy control condition, stated in (3.4).
For L1.2

s,r,l, we need to recall some facts we already know. Firstly, by (3.3) and
the de la Vallée Poussin theorem (lemma 2.3) we get the uniform integrability
of the sequence {As,l+1}s>0. But due to the weak-∗ convergence in (3.11), the
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Dunford–Pettis theorem yields (up to a subsequence)

As,l+1 ⇀ A(x,∇Tl+1(u)) weakly in L1(Ω; Rn).

Furthermore, since we also know the following

|Ψl(us)| � 1,

∇(h(ur)φ) ∈ L∞(Ω; Rn),

Ψl(us) −−−→
s→∞ Ψl(u) a.e. in Ω,

we infer from lemma 2.8 that

lim
r→∞ lim sup

s→∞

∫
Ω

As,l+1Ψl(us) · ∇(h(ur)φ) dx

= lim
r→∞

∫
Ω

A(x,∇Tl+1(u))Ψl(u) · ∇(h(ur)φ
)
dx

=
∫

Ω

A(x,∇Tl+1(u))Ψl(u) · ∇(h(u)φ
)
dx.

Choosing l > m, we obtain

lim
l→∞

lim
r→∞ lim sup

s→∞
L1,2

s,r,l

= lim
l→∞

∫
Ω

A(x,∇Tl+1(u)) · ∇(h(u)φ)
)
Ψl(u) dx

=
∫

Ω

A(x,∇u) · ∇(h(u)φ
)
dx.

Using the facts that C∞
c (Ω) ⊂ W 1,∞

0 (Ω) and the gradients of functions in V 1
0 LM (Ω)

can be approximated by smooth functions in the weak-∗ topology of LM (Ω; Rn),
we finally arrive at

∫
Ω

A(x,∇u) · ∇(h(u)φ) + Φ(u) · ∇(h(u)φ) + b(x, u)h(u)φ dx

=
∫

Ω

fh(u)φ + F · ∇(h(u)φ) dx

for every h ∈ C1
c (R) and all φ ∈ V 1

0 LM (Ω) ∩ L∞(Ω). Thus, condition (R2) is
satisfied.
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Condition (R3).
As in the definition of renormalized solutions, we have to show that

∫
{l<|u|<l+1}

A(x,∇u) · ∇u dx =
∫
{l<|u|<l+1}

A(x,∇Tl+1(u)) · ∇Tl+1(u) dx
l→∞−−−→ 0.

The first thing we are going to prove is that

As,l+1∇Tl+1(us) ⇀ A(x,∇Tl+1(u)) · ∇Tl+1(u) weakly in L1(Ω) (3.39)

as s → ∞. Here is the place where the first time we apply Young measures. We
begin with showing the uniform integrability of the sequence

{(
As,l+1 −A(x,∇Tl+1(u))

)
·
(
∇Tl+1(us) −∇Tl+1(u)

)}
s

.

At first, for every s we can make the following estimate

∫
Ω

(
As,l+1 −A(x,∇Tl+1(u))

)
·
(
∇Tl+1(us) −∇Tl+1(u)

)
dx

� |J1| + |J2| + |J3| + |J4|,

where

J1 :=
∫

Ω

As,l+1 · ∇Tl+1(us) dx,

J2 :=
∫

Ω

As,l+1 · ∇Tl+1(u) dx,

J3 =
∫

Ω

A(x,∇Tl+1(u)) · ∇Tl+1(us) dx,

J4 :=
∫

Ω

A(x,∇Tl+1(u)) · ∇Tl+1(u) dx.

Then, using the Fenchel–Young inequality and our a priori estimates (3.2) and
(3.3), we infer that

|J1|=
∣∣ ∫

Ω

As,l+1 · ∇Tl+1(us) dx
∣∣�2‖A(x, Tl+1(us))‖LM∗ (Ω)‖∇Tl+1(us)‖LM (Ω) �C,

where C is independent of s. Notice that we may obtain the same estimate for each
Ji, where i = 1, 2, 3, 4. Thus, since it does not depend on s, we get the uniform
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boundedness of the sequence{(
As,l+1 −A(x,∇Tl+1(u))

)
·
(
∇Tl+1(us) −∇Tl+1(u)

)}
s

in L1(Ω). Therefore, we may use Chacon’s biting lemma (lemma 2.12) and
lemma 2.9, up to a subsequence, get the following biting convergence

0 �
(
As,l+1 −A(x,∇Tl+1(u))

)
·
(
∇Tl+1(us) −∇Tl+1(u)

)

b−−−→
s→∞

∫
Rn

(
A(x, λ) −A(x,∇Tl+1(u))

)
·
(

λ −∇Tl+1(u)

)
dνx(λ).

(3.40)

Here, νx is a Young measure, which is generated by the sequence
{∇Tl+1(us)

}
.

Since ∇Tl+1(us) ⇀ ∇Tl+1(u) in L1(Ω; Rn) (obtained in (3.11)), the equality∫
RN

λ dνx(λ) = ∇Tl+1(u)

holds for a.e. x ∈ Ω. It follows that∫
RN

A(x,∇Tl+1(u)) · (λ −∇Tl+1(u)
)
dνx(λ) = 0.

Thus, our limit simply becomes

∫
Rn

(
A(x, λ) −A(x,∇Tl+1(u))

)
·
(

λ −∇Tl+1(u)

)
dνx(λ)

=
∫

Rn

A(x, λ) · λ dνx(λ) −
∫

RN

A(x, λ) · ∇Tl+1(u) dνx(λ).

(3.41)

Now, the result in (3.4) yields uniform boundedness of the sequence
{As,l+1 ·

∇Tl+1(us)
}

s
and this allows us to use Chacon’s biting lemma (lemma 2.12) and

lemma 2.9 to get

As,l+1 · ∇Tl+1(us)
b−−−→

s→∞

∫
RN

A(x, λ) · λ dνx(λ).

Now we look on assumption (A2). In particular, it immediately implies As,l+1 ·
∇Tl+1(us) � 0. Thus, by lemma 2.10, we obtain

lim sup
s→∞

(A(x,∇Tl+1(us)) · ∇Tl+1(us)
)

�
∫

Rn

A(x, λ) · λ dνx(λ). (3.42)

Since we already considered this limit in (3.32), taking

Ak = A(x,∇Tl+1(u)) =
∫

Rn

A(x, λ) dνx(λ),
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we may rewrite (3.42) as

∇Tl+1(u)
∫

Rn

A(x, λ) dνx(λ) �
∫

Rn

A(x, λ) · λ νx(λ).

Comparing this inequality with (3.41), we see that the limit obtained in (3.40) is
less or equal to zero. Thus, we infer that(

As,l+1 −A(x,∇Tl+1(u))

)
·
(
∇Tl+1(us) −∇Tl+1(u)

)
b−−−→

s→∞ 0.

Now we would like to show that there is actually a stronger convergence, namely

As,l+1 · ∇Tl+1(us)
b−−−→

s→∞ A(x,∇Tl+1(u)) · ∇Tl+1(u). (3.43)

If so, then lemma 2.13 combined with (3.32) and also the weak-∗ convergence of A,
described in (3.11), will give us (3.39).

Thus, let us prove (3.43). Observe that since A(x, ∇Tl+1(u)) ∈ LM∗(Ω; Rn), there
exists a family of ascending sets

{
El+1

j

}
, such that

lim
j→∞

∣∣El+1
j

∣∣ = 0

and also

A(x,∇Tl+1(u)) ∈ L∞(Ω \ El+1
j ).

As stated in (3.11), we have ∇Tl+1(us)
∗
⇀ ∇Tl+1(u) weakly-∗ in LM (Ω; Rn) as

s → ∞. Therefore, we infer that

A(x,∇Tl+1(u)) · (∇Tl+1(us) −∇Tl+1(u)
) b−−−→

s→∞ 0.

Moreover, very similar arguments yield

As,l+1 · ∇Tl+1(u) b−−−→
s→∞ A(x,∇Tl+1(u)) · ∇Tl+1(u).

Collecting the two above convergences, we arrive at (3.43).
Now is the time to make use of (3.39) and (3.4). First, observe that by the

properties of truncations, for every l ∈ N we get

∇us = 0 a.e. in {x ∈ Ω : |us| ∈ {l, l + 1}}.
Therefore, by (3.4) we obtain

lim
l→∞

lim sup
s→∞

∫
{l−1<|u|<l+2}

A(x,∇us) · ∇us dx = 0. (3.44)

Let us define a function Gl : R → R by the formula:

Gl(r) =

⎧⎨
⎩

1 if l � |r| � l + 1
0 if |r| < l − 1 or |r| > l + 2
affine otherwise
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Then we may write∫
{l<|u|<l+1}

A(x,∇u) · ∇u dx �
∫

Ω

Gl(u)A(x,∇Tl+2(u)) · ∇Tl+2(u) dx. (3.45)

As we mentioned before, thanks to (A2) we have A(x, ξ) · ξ � 0, hence taking a
limit in (3.45), we get

0 � lim
l→∞

∫
{l<|u|<l+1}

A(x,∇u) · ∇u dx

� lim
l→∞

∫
Ω

Gl(u)A(x,∇Tl+2(u)) · ∇Tl+2(u) dx.

(3.46)

But since we have (3.39) and Gl is a bounded continuous function, we obtain

lim
l→∞

∫
Ω

Gl(u)A(x,∇Tl+2(u)) · ∇Tl+2(u) dx

= lim
l→∞

lim
s→∞

∫
Ω

Gl(u)A(x,∇Tl+2(us)) · ∇Tl+2(us) dx

� lim
l→∞

lim sup
s→∞

∫
{l−1<|u|<l+2}

A(x,∇us) · ∇us dx

= 0.

(3.47)

The last inequality follows directly from (3.44). By (3.47) and (3.46), we obtain

lim
l→∞

∫
{l<|u|<l+1}

A(x,∇u) · ∇u dx = 0,

which gives condition (R3). Thus, u is a renormalized solution and the proof is
complete.

4. Uniqueness of renormalized solutions

Now we are ready to prove the uniqueness of renormalized solutions for problem
(1.1) under the condition that s → b(·, s) is strictly increasing. We would like to
point out that our approach is much influenced by [14, 26, 53].

Proof of proposition 1.4. We define the auxiliary functions

Hδ(r) =

⎧⎪⎨
⎪⎩

0, r < 0,
r

δ
, 0 � r � δ,

1, r > δ,

hl(r) =

⎧⎨
⎩

1, |r| � l − 1,
l − |r|, l − 1 � |r| � l,

0, r > l,
(4.1)

for δ > 0 and l > 1. By denoting

Zl,δ = {0 < Tl(u1) − Tl(u2) < δ}
and testing equation (1.1) with φ1 = hl(u1)Hδ(Tl(u1) − Tl(u2)) and φ2 =
hl(u2)Hδ(Tl(u1) − Tl(u2)) respectively, subtracting the resulting equations, we get

I1
l,δ + I2

l,δ + I3
l,δ + I4

l,δ + I5
l,δ = I6

l,δ + I7
l,δ + I8

l,δ (4.2)
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with

I1
l,δ =

∫
Ω

(
b(x, u1)hl(u1) − b(x, u2)hl(u2)

)
Hδ

(
Tl(u1) − Tl(u2)

)
dx,

I2
l,δ =

∫
Ω

(
h′

l(u1)A(x,∇u1) · ∇u1 − h′
l(u2)A(x,∇u2) · ∇u2

)

· Hδ(Tl(u1) − Tl(u2)) dx,

I3
l,δ =

1
δ

∫
Zl,δ

(
hl(u1)A(x,∇u1) − hl(u2)A(x,∇u2)

)
· ∇(Tl(u1) − Tl(u2)

)
dx,

I4
l,δ =

∫
Ω

(
h′

l(u1)Φ(u1) · ∇u1 − h′
l(u2)Φ(u2) · ∇u2

)
· Hδ(Tl(u1) − Tl(u2)) dx,

I5
l,δ =

1
δ

∫
Zl,δ

(
hl(u1)Φ(u1) − hl(u2)Φ(u2)

)
· ∇(Tl(u1) − Tl(u2)

)
dx,

I6
l,δ =

∫
Ω

f(hl(u1) − hl(u2)) · Hδ

(
Tl(u1) − Tl(u2)

)
dx,

I7
l,δ =

∫
Ω

F

(
h′

l(u1) · ∇u1 − h′
l(u2) · ∇u2

)
· Hδ(Tl(u1) − Tl(u2)) dx,

I8
l,δ =

1
δ

∫
Zl,δ

F (hl(u1) − hl(u2)) · ∇
(
Tl(u1) − Tl(u2)

)
dx.

Next, we are going to estimate Ii
l,δ(1 � i � 8) one by one.

Estimate of I1
l,δ. Note that we have Hδ(Tl(u1) − Tl(u2)) → sign+

0 (Tl(u1) − Tl(u2))
as δ → 0. Thus, the Lebesgue-dominated convergence theorem yields

I1
l = lim

δ→0
I1
l,δ

=
∫

Ω

(
b(x, u1)hl(u1) − b(x, u2)hl(u2)

)
sign+

0 (Tl(u1) − Tl(u2)) dx.

Estimate of I2
l,δ. According to condition (R3), we know that the integrand in I2

l,δ

is bounded in L1 and by the same arguments as above we get

I2
l = lim

δ→0
I2
l,δ =

∫
Ω

(
h′

l(u1)A(x,∇u1) · ∇u1 − h′
l(u2)A(x,∇u2) · ∇u2

)

· sign+
0 (Tl(u1) − Tl(u2)) dx.

Estimate of I3
l,δ. Observing that

I3
l,δ = I3,1

l,δ + I3,2
l,δ ,
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where

I3,1
l,δ =

1
δ

∫
Zl,δ

(hl(u1) − hl(u2))A(x,∇Tl(u1))∇
(
Tl(u1) − Tl(u2)

)
dx,

I3,2
l,δ =

1
δ

∫
Zl,δ

hl(u2)(A(x,∇Tl(u1)) −A(x,∇Tl(u2)))∇(Tl(u1) − Tl(u2)) dx.

The monotonicity of A implies that I3,2
l,δ � 0. Since ‖h′

l‖∞ = 1 due to the generalized
Hölder inequality, we have

|I3,1
l,δ | �

∫
Ω

|A(x,∇Tl(u1))∇(Tl(u1) − Tl(u2))χZl,δ
|dx,

� 2‖A(x,∇Tl(u1))‖LM∗ (Ω)‖∇(Tl(u1) − Tl(u2))χZl,δ
‖LM (Ω).

Notice that the constant C in (3.2) and (3.3) is independent of s, we obtain

lim
δ→0

I3,1
l,δ = 0.

Estimate of I4
l,δ. We note that

I4
l,δ =

∫
Ω

(
h′(Tl(u1))Φ(u1) · ∇u1 − h′(Tl(u2))Φ(u2) · ∇u2

)

· Hδ(Tl(u1) − Tl(u2)) dx

=
∫

Ω

div

(∫ Tl(u1)

Tl(u2)

h′
l(r)Φ(r)dr

)
· Hδ(Tl(u1) − Tl(u2)) dx

= −
∫

Ω

(∫ Tl(u1)

Tl(u2)

h′
l(r)Φ(r)dr

)
· ∇Hδ(Tl(u1) − Tl(u2)) dx

= −1
δ

∫
{0<Tl(u1)−Tl(u2)<δ}

(∫ Tl(u1)

Tl(u2)

h′
l(r)Φ(r)dr

)
· ∇(Tl(u1) − Tl(u2)) dx.

Then

|I4
l,δ| � max

s∈[−l,l]
|Φ(s)|

∫
{0<Tl(u1)−Tl(u2)<δ}

|∇(Tl(u1) − Tl(u2))|dx
δ→0−−−→ 0,

since on the right-hand side we have integrals of integrable functions over shrinking
sets. Therefore, limδ→0 I4

l,δ = 0.
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Estimate of I5
l,δ. We can split I5

l,δ as

I5
l,δ = I5,1

l,δ + I5,2
l,δ ,

where

I5,1
l,δ =

1
δ

∫
Zl,δ

hl(u1)

(
Φ(Tl(u1)) − Φ(Tl(u2))

)
· ∇(Tl(u1) − Tl(u2)

)
dx,

I5,2
l,δ =

1
δ

∫
Zl,δ

(hl(u1) − hl(u2))Φ(u2) · ∇
(
Tl(u1) − Tl(u2)

)
dx.

Since Φ is Lipschitz, we have

|I5,1
l,δ | � LΦ

∫
{0<Tl(u1)−Tl(u2)<δ}

|∇(Tl(u1) − Tl(u2))|dx

|I5,2
l,δ | � max

s∈[−l,l]
|Φ(s)|

∫
{0<Tl(u1)−Tl(u2)<δ}

|∇(Tl(u1) − Tl(u2))|dx.

Argue as above, we have limδ→0 I5
l,δ = 0.

Estimate of I6
l,δ. It can be deduced from the Lebesgue-dominated convergence

theorem that

I6
l = lim

δ→0
I6
l,δ =

∫
Ω

f(hl(u1) − hl(u2)) · sign+
0 (Tl(u1) − Tl(u2)) dx.

Estimate of I7
l,δ. Similarly, we have

I7
l = lim

δ→0
I7
l,δ

=
∫

Ω

F

(
h′

l(u1) · ∇u1 − h′
l(u2) · ∇u2

)
· sign+

0 (Tl(u1) − Tl(u2)) dx.

Estimate of I8
l,δ. According to the fact that ‖h′

l‖∞ = 1 and Fenchel–Young
inequality, we have

|I8
l,δ| =

∣∣∣∣∣1δ
∫

Zl,δ

F (hl(u1) − hl(u2)) · ∇
(
Tl(u1) − Tl(u2)

)
dx

∣∣∣∣∣
�
∫

Zl,δ

∣∣∣∣∣F · ∇(Tl(u1) − Tl(u2))

∣∣∣∣∣ dx

�
∫

Zl,δ

2M∗
(

x,
4
cA1

F

)
+

1
4
M(x, cA1 ∇Tl(u1)) +

1
4
M(x, cA1 ∇Tl(u2)) dx

δ→0−−−→ 0.

Combining the above estimates, we find that

I1
l + I2

l + I3
l = I6

l + I7
l .
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Since I3
l � 0, we have

I1
l + I2

l � I6
l + I7

l .

Thanks to condition (R3), the definition of hl and by the similar arguments as
(3.25), we immediately have I2

l → 0, I6
l → 0, I7

l → 0 as l → ∞. Next, we focus on
proving that

I1 = lim
l→∞

I1
l =

∫
Ω

(b(x, u1) − b(x, u2))+ dx.

For this, we notice that lim
l→∞

sign+
0 (Tl(u1) − Tl(u2)) = sign+

0 (u1 − u2) almost every-

where in Ω and weakly-∗ in L∞(Ω). Therefore, we can pass to the limit and
obtain

I1 =
∫

Ω

(b(x, u1) − b(x, u2)) sign+
0 (u1 − u2) dx =

∫
Ω

(b(x, u1) − b(x, u2))+ dx.

Thus, we have ∫
Ω

(b(x, u1) − b(x, u2))+ dx � 0,

so that (b(x, u1) − b(x, u2))+ = 0 almost everywhere due to sign condition of b.
Since b is strictly increasing with respect to the second variable, we see that u1 � u2.
Considering φ1 = hl(u1)Hδ(Tl(u2) − Tl(u1)) and φ2 = hl(u2)Hδ(Tl(u2) − Tl(u1))
yields the opposite inequality and thus u1 = u2. �.
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27 L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka. Lebesgue and Sobolev spaces with
variable exponents (Heidelberg: Springer, 2011).

28 R. J. DiPerna and P.-L. Lions. On the cauchy problem for Boltzmann equations: global
existence and weak stability. Ann. of Math. (2) 130 (1989), 321–366.

29 T. Donaldson. Nonlinear elliptic boundary value problems in Orlicz-Sobolev spaces.
J. Differ. Equ. 10 (1971), 507–528.

30 G. Dong and X. Fang. Differential equations of divergence form in separable Musielak-
Orlicz-Sobolev spaces. Bound. Value Probl. 2016 (2016), 1–19.

31 L. Esposito, F. Leonetti and G. Mingione. Sharp regularity for functionals with (p, q)
growth. J. Differ. Equ. 204 (2004), 5–55.

32 X. Fan. Differential equations of divergence form in Musielak–Sobolev spaces and a sub-
supersolution method. J. Math. Anal. Appl. 386 (2012), 593–604.

33 J.-P. Gossez. Nonlinear elliptic boundary value problems for equations with rapidly (or
slowly) increasing coefficients. Trans. Amer. Math. Soc. 190 (1974), 163–205.

34 J.-P. Gossez. Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems.
Nonlinear Anal. Funct. Spaces Appl. (1979), 59–94.

35 P. Gwiazda, I. Skrzypczak and A. Zatorska-Goldstein. Existence of renormalized solutions
to elliptic equation in Musielak–Orlicz space. J. Differ. Equ. 264 (2018), 341–377.

https://doi.org/10.1017/prm.2023.113 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.113


Existence of renormalized solutions 37
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