Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T00:57:27.800Z Has data issue: false hasContentIssue false

12 - Exploring the interaction between nematode-trapping fungi and nematodes by using DNA microarrays

from IV - Pathogenic interactions in the environment

Published online by Cambridge University Press:  03 November 2009

Anders Tunlid
Affiliation:
Department of Microbial Ecology, Lund University
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

Introduction

Soils contain a diverse range of fungi that are parasites on nematodes. They include more than 200 species representing all major taxonomic groups of fungi including deuteromycetes, basidiomycetes, chytridiomycetes and zygomycetes. Nematophagous fungi are found in all regions of the world, from the tropics to Antarctica. They are present in all sorts of soil environments, including agricultural and forest soils (Barron, 1977).

Based on the infection mechanisms, three broad groups can be recognized among the nematophagous fungi: the nematode-trapping and the endoparasitic fungi that attack free-living nematodes by using specialized structures, and the egg- and cyst-parasitic fungi that infect these stages with their hyphal tips (Barron, 1977). The nematode-trapping fungi are the best-known group, probably owing to their remarkable morphological adaptations and their dramatic infection of nematodes. With few exceptions, including the mushroom Hohenbuehelia (asexual state Nematoctonus) (Barron & Dierkes, 1977), the majority of the identified species of nematode-trapping fungi belong to a monophyletic clade among the apothecial ascomycetes (Liou & Tzean, 1997; Ahrén et al., 1998; Hagedorn & Scholler, 1999).

Nematode-trapping fungi can grow as saprophytes in soils. They enter the parasitic stage by developing specific morphological structures called traps. The traps develop from hyphal branches; they can either be formed spontaneously or be induced in response to signals from the environment, including peptides and other compounds secreted by the host nematode (Dijksterhuis et al., 1994). There is large variation in the morphology of trapping structures, even between closely related species (Fig. 12.1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åhman, J., Ek, B., Rask, L. & Tunlid, A. (1996). Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology 142, 1605–16.CrossRefGoogle ScholarPubMed
Åhman, J., Johansson, T., Olsson, M., Punt, P. J., Hondel, C. A. & Tunlid, A. (2002). Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Applied and Environmental Microbiology 68, 3408–15.CrossRefGoogle ScholarPubMed
Ahrén, D., Ursing, B. M. & Tunlid, A. (1998). Phylogeny of nematode-trapping fungi based on 18 S rDNA sequences. FEMS Microbiology Letters 158, 179–84.CrossRefGoogle Scholar
Ahrén, D., Troein, C., Johansson, T. & Tunlid, A. (2004). PHOREST: a web-based tool for comparative analyses of expressed sequence tag data. Molecular Ecology Notes 4, 311–14.CrossRefGoogle Scholar
Ahrén, D., Tholander, M., Fekete, C., Rajashekar, B., Friman, E., Johansson, T. & Tunlid, A. (2005). Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 151, 789–803.CrossRefGoogle ScholarPubMed
Ayscough, K. R. (1998). In vivo functions of actin-binding proteins. Current Opinion in Cell Biology 10, 102–11.CrossRefGoogle ScholarPubMed
Ball, C. A., Brazma, A., Causton, H. & 15 other authors. (2004). Submission of microarray data to public repositories. PLoS Biology 2, E317.CrossRefGoogle ScholarPubMed
Balogh, J., Tunlid, A. & Rosén, S. (2003). Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genetics and Biology 39, 128–35.CrossRefGoogle Scholar
Barron, G. L. (1977). The Nematode-Destroying Fungi. Guelph, Canada: Lancester Press.Google Scholar
Barron, G. L. & Dierkes, Y. (1977). Nematophagous fungi: Hohenbuehelia the perfect state of Nematoctonus. Canadian Journal of Botany 55, 3054–62.CrossRefGoogle Scholar
Bensen, E. S., Martin, S. J., Li, M., Berman, J. & Davis, D. A. (2004). Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Molecular Microbiology 54, 1335–51.CrossRefGoogle ScholarPubMed
Brown, P. O. & Botstein, D. (1999). Exploring the new world of the genome with DNA microarrays. Nature Genetics 21, 33–7.CrossRefGoogle ScholarPubMed
Couillault, C., Pujol, N., Reboul, J., Sabatier, L., Gnichou, J. F., Kohara, Y. & Ewbank, J. J. (2004). TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nature Immunology 5, 488–94.CrossRefGoogle ScholarPubMed
Dijksterhuis, J., Veenhuis, M., Harder, W. & Nordbring-Hertz, B. (1994). Nematophagous fungi: physiological aspects and structure-function relationships. Advances in Microbial Physiology 36, 111–43.CrossRefGoogle ScholarPubMed
Friman, E. (1993). Isolation of trap cells from the nematode-trapping fungus Dactylaria candida. Experimental Mycology 17, 368–70.CrossRefGoogle Scholar
Hagedorn, G. & Scholler, M. (1999). A reevaluation of predatory orbiliaceous fungi. I: Phylogenetic analysis using rDNA sequence data. Sydowia 51, 27–48.Google Scholar
Jansson, H.-B. & Lopez-Llorca, L. V. (2004). Control of nematodes by fungi. In Fungal Biotechnology in Agriculture, Food and Environmental Applications, ed. Arora, D. K., pp. 205–15. New York: Marcel Dekker.Google Scholar
Johansson, T., Quéré, A., Ahrén, D., Söderström, B., Erlandsson, R., Lundeberg, J., UhlÅn, M. & Tunlid, A. (2004). Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Molecular Plant-Microbe Interactions 17, 202–15.CrossRefGoogle ScholarPubMed
Lappalainen, P. & Drubin, D. G. (1997). Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82.CrossRefGoogle ScholarPubMed
Larsen, M. (2000). Prospects for controlling animal parasitic nematodes by predacious micro fungi. Parasitology 120, S121–31.CrossRefGoogle ScholarPubMed
Quéré, A., Schützendübel, A., Rajashekar, B., CanbÌck, B., Hedh, I., Erland, S., Johansson, T. & Tunlid, A. (2004). Divergence in gene expression related to variation in host specificity of an ectomycorrhizal fungus. Molecular Ecology 13, 3809–19.CrossRefGoogle ScholarPubMed
Liou, G. Y. & Tzean, S. S. (1997). Phylogeny of the genus Arthrobotrys and allied nematode-trapping-fungi based on rDNA sequences. Mycologia 89, 876–84.CrossRefGoogle Scholar
Mata, J., Lyne, R., Burns, G. & Bahler, J. (2002). The transcriptional program of meiosis and sporulation in fission yeast. Nature Genetics 32, 143–7.CrossRefGoogle ScholarPubMed
McCafferty, H. R. & Talbot, N. J. (1998). Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonisation. Current Genetics 33, 352–61.CrossRefGoogle ScholarPubMed
Mewes, H. W., Frishman, D., Guldener, U. & 27 other authors. (2002). MIPS: a database for genomes and protein sequences. Nucleic Acids Research 30, 31–4.CrossRefGoogle ScholarPubMed
Mylonakis, E., Ausubel, F. M., Perfect, J. R., Heitman, J. & Calderwood, S. B. (2002). Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis. Proceedings of the National Academy of Sciences of the USA 99, 15,675–80.CrossRefGoogle ScholarPubMed
Nordbring-Hertz, B., Jansson, H.-B., Persson, Y., Frimans, C. & Dackman, C. (1995). Nematophagous Fungi. Film C1851. Göttingen: Institut für den Wissenschaftlichen Film.Google Scholar
Pruyne, D. & Bretscher, A. (2000). Polarization of cell growth in yeast. Journal of Cell Science 113, 571–85.Google Scholar
Rauyaree, P., Choi, W., Fang, E., Blackmon, B. & Dean, R. A. (2004). Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Molecular Plant Pathology 2, 347–54.CrossRefGoogle Scholar
Rosén, S., Kata, M., Persson, Y., Lipniunas, P. H., Wikström, M., Hondel, C. A. M. J. J., Brink, J. M., Rask, L., Hedén, L.-O. & Tunlid, A. (1996). Molecular characterization of a saline soluble lectin from a parasitic fungus. Extensive sequence similarity between fungal lectins. European Journal of Biochemistry 238, 822–9.CrossRefGoogle ScholarPubMed
Rosén, S., Sjollema, K., Veenhuis, M. & Tunlid, A. (1997). A cytoplasmic lectin produced by the fungus Arthrobotrys oligospora functions as a storage protein during saprophytic and parasitic growth. Microbiology 143, 2593–604.CrossRefGoogle Scholar
Sifri, C. D., Begun, J. & Ausubel, F. M. (2005). The worm has turned – microbial virulence modeled in Caenorhabditis elegans. Trends in Microbiology 13, 119–27.CrossRefGoogle ScholarPubMed
Takano, Y., Choi, W., Mitchell, T. K., Okuno, T. & Dean, R. A. (2004). Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Molecular Plant Pathology 4, 337–46.CrossRefGoogle Scholar
Thines, E., Weber, R. W. & Talbot, N. J. (2000). MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12, 1703–18.Google ScholarPubMed
Thomas, S. W., Glaring, M. A., Rasmussen, S. W., Kinane, J. T. & Oliver, R. P. (2002). Transcript profiling in the barley mildew pathogen Blumeria graminis by serial analysis of gene expression (SAGE). Molecular Plant-Microbe Interactions 15, 847–56.CrossRefGoogle Scholar
Tucker, S. L. & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology 39, 385–417.CrossRefGoogle ScholarPubMed
Tunlid, A., Åhman, J. & Oliver, R. P. (1999). Transformation of the nematode-trapping fungus Arthrobotrys oligospora. FEMS Microbiology Letters 173, 111–16.CrossRefGoogle ScholarPubMed
Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamedeh, H., Buchel, P., Afshari, C. & Paules, R. S. (2001). Assessing gene significance from cDNA microarray expression data via mixed models. Journal of Computational Biology 8, 625–37.CrossRefGoogle ScholarPubMed
Wright, D. P., Johansson, T., Quéré, A., Söderström, B. & Tunlid, A. (2005). Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula Roth.) seedlings in soil microcosms. New Phytologist 167, 579–96.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×