Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T01:06:38.471Z Has data issue: false hasContentIssue false

7 - Natural abundance of 15N and 13C in saprotrophic fungi: what can they tell us?

from II - Functional ecology of saprotrophic fungi

Published online by Cambridge University Press:  03 November 2009

Andy F. S. Taylor
Affiliation:
Swedish University of Agricultural Sciences, Uppsala
Petra M. A. Fransson
Affiliation:
Swedish University of Agricultural Sciences, Uppsala
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

Introduction

The aim of this chapter is to summarize recent developments in the study of the natural abundance of stable isotopes, primarily 15N and 13C, in fungal sporocarps. The main focus will be on saprotrophic fungi but, owing to a scarcity of studies, considerable use is made of the more abundant literature on ectomycorrhizal fungi. A brief introduction to the terminology used in the determination and use of the stable isotopes 15N and 13C is provided. This is followed by a discussion of the most significant findings from investigations into ectomycorrhizal fungi and how these compare with the available data from saprotrophic fungi. Recent results from a study focusing on saprotrophic fungi are then presented. Finally, some suggestions are given as to where isotope data may be useful in investigating the ecology of saprotrophic fungi.

Microorganisms are integral components of most biogeochemical cycles in terrestrial ecosystems (Dighton, 1995). The role of fungi, in particular, in boreal and temperate forests is pivotal. Most of the trees in these forests form mutualistic associations with a wide range of ectomycorrhizal fungi (Smith & Read, 1997) while the breakdown of woody debris is almost exclusively carried out by saprotrophic fungi (Tanesaka et al., 1993). In addition to these essential ecological roles, fungi make up a large proportion of the total organism diversity in these systems. Despite their evident importance, relatively little is known about fungal activities in situ.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, W-.R. & Hesse, C. (2003). Isotope fractionations in the biosynthesis of cell components by different fungi: a basis for environmental carbon flux studies. FEMS Microbiology Ecology 46, 121–8.CrossRefGoogle ScholarPubMed
Agerer, R. (1987–2002). Colour Atlas of Ectomycorrhizae. 1st–12th delivery. Schwäbisch Gmünd: Einhorn Verlag.Google Scholar
Bauer, G. A., Andersen, B., Gebauer, G., Harrison, T., Högberg, P., Högbom, L., Taylor, A. F. S., Novak, M., Harkness, D., Schulze, E.-D. & Persson, T. (2000). Biotic and abiotic controls over ecosystem cycling of stable natural isotopes for nitrogen, carbon and sulfur. In Carbon and Nitrogen Cycling in European Forest Ecosystems, ed. Schulze, E.-D., Ecological Studies, vol. 142. Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Dawson, T., Mambelli, S., Plamboeck, A. H., Templer, P. H. & Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33, 507–59.CrossRefGoogle Scholar
Dickie, I. A., Xu, B. & Koide, R. T. (2002). Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytologist 156, 527–35.CrossRefGoogle Scholar
Dighton, J. (1995). Nutrient cycling in different terrestrial ecosystems in relation to fungi. Canadian Journal of Botany 73, 1349–60.CrossRefGoogle Scholar
Emmett, B. A., Kjonaas, O. J., Gundersen, P., Koopmans, C., Tietema, A. & Sleep, D. (1998). Natural abundance of 15N in forests across a nitrogen deposition gradient. Forest Ecology and Management 101, 9–18.CrossRefGoogle Scholar
Farquhar, G. D., Ehleringer, J. R. & Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Physiology Plant and Molecular Biology 40, 503–37.CrossRefGoogle Scholar
Frankland, J. C. (1998) Fungal succession – unravelling the unpredictable. Mycological Research 102, 1–15.CrossRefGoogle Scholar
Fung, I., Field, C. B., Berry, J. A., Thompson, M. V., Randerson, J. T., Malmström, C. M., Vitousek, P. M., Collatz, G. J., Sellers, P. J., Randall, D. A., Denning, A. S., Badeck, F. & John, J. (1997). Carbon 13 exchanges between the atmosphere and biosphere. Global Biogeochemical Cycles 11, 507–33.CrossRefGoogle Scholar
Gebauer, G. & Dietrich, P. (1993). Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Isotopenpraxis Environmental Health Studies 29, 35–44.CrossRefGoogle Scholar
Gebauer, G. & Meyer, M. (2003). 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist 160, 209–23.CrossRefGoogle Scholar
Gebauer, G. & Taylor, A. F. S. (1999). 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization. New Phytologist 142, 93–101.CrossRefGoogle Scholar
Gilbertson, R. L. (1981). North American wood-rotting fungi that cause brown rots. Mycotaxon 12, 372–416.Google Scholar
Gleixner, G., Danier, H.-J., Werner, R. A. & Schmidt, H.-L. (1993). Correlations between the 13C of primary and secondary plant products in different cell compartments and that in decomposing Basidiomycetes. Plant Physiology 102, 1287–90.CrossRefGoogle ScholarPubMed
Handley, L. L. & Raven, J. A. (1992). The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant, Cell and Environment 15, 965–85.CrossRefGoogle Scholar
Hansen, L. & Knudsen, H. (1992). Nordic Macromycetes, vol. 2, Polyporales, Boletales, Agaricales, Russulales. Copenhagen, Denmark: Nordsvamp.Google Scholar
Hansen, L. & Knudsen, H. (1997). Nordic Macromycetes, vol. 3, Heterobasidioid, Aphyllophoroid and Gasteromycetoid Basidiomycetes. Copenhagen, Denmark: Nordsvamp.Google Scholar
Henn, M. R. & Chapela, I. H. (2000). Differential C isotope discrimination by fungi during decomposition of C-3- and C-4-derived sucrose. Applied and Environmental Microbiology 66, 4180–6.CrossRefGoogle ScholarPubMed
Henn, M. R. & Chapela, I. H. (2001). Ecophysiology of 13C and 15N isotopic fractionation in forest fungi and the roots of the saprotrophic-mycorrhizal divide. Oecologia 128, 480–7.CrossRefGoogle ScholarPubMed
Hobbie, E. A. & Colpaert, J. V. (2003). Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist 157, 115–26.CrossRefGoogle Scholar
Hobbie, E. A., Macko, S. A. & Shugart, H. H. (1998). Patterns in N dynamics and N isotopes during primary succession in Glacier Bay, Alaska. Chemical Geology 152, 3–11.CrossRefGoogle Scholar
Hobbie, E. A. & Werner, R. A. (2004). Intramolecular, compound-specific, and bulk carbon isotope patterns in C3 and C4 plants: a review and synthesis. New Phytologist 161, 371–85.CrossRefGoogle Scholar
Hobbie, E. A., Macko, S. A. & Shugart, H. H. (1999). Insights into nitrogen and carbon dynamics of ectomycorrhizal and saprotrophic fungi from isotopic evidence. Oecologia 118, 353–60.CrossRefGoogle ScholarPubMed
Hobbie, E. A., Macko, S. A. & Williams, M. (2000). Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia 122, 273–83.CrossRefGoogle ScholarPubMed
Hobbie, E. A., Weber, N. S. & Trappe, J. M. (2001). Mycorrhizal vs saprotrophic status of fungi: the isotopic evidence. New Phytologist 150, 601–10.CrossRefGoogle Scholar
Hobbie, E. A., Weber, N. S., Trappe, J. M. & Klinken, G. J. (2002). Using radiocarbon to determine the mycorrhizal status of fungi. New Phytologist 156, 129–36.CrossRefGoogle Scholar
Hobbie, E. A., Sánchez, F. S. & Rygiewicz, P. T. (2004). Carbon use, nitrogen use, and isotope fractionation of ectomycorrhizal and saprotrophic fungi in natural abundance and 13C-labelled cultures. Mycological Research 108, 725–36.CrossRefGoogle ScholarPubMed
Högberg, P. (1997). Tansley Review No 95 – N-15 natural abundance in soil-plant systems. New Phytologist 137, 179–203.CrossRefGoogle Scholar
Högberg, P., Högbom, L., Schinkel, H.et al. (1996). 15N abundance of surface soils, roots and mycorrhizas in profiles of European forest soils. Oecologia 108, 207–14.CrossRefGoogle ScholarPubMed
Högberg, P., Plamboeck, A. H., Taylor, A. F. S & Fransson, P. M. A. (1999). Natural C-13 abundance reveals trophic status of fungi and host-origin of carbon in mycorrhizal fungi in mixed forests. Proceedings of the National Academy of Sciences of the USA 96, 8534–9.CrossRefGoogle Scholar
Holmer, L., Renvall, P. & Stenlid, J. (1997). Selective replacement between species of wood-rotting basidiomycetes, a laboratory study. Mycological Research 101, 714–20.CrossRefGoogle Scholar
Kohzu, A., Yoshioka, T., Ando, T., Takahashi, M., Koba, K. & Wada, E. (1999). Natural 13C and 15N abundance of field-collected fungi and their ecological implications. New Phytologist 144, 323–30.CrossRefGoogle Scholar
Landeweert, R., Leeflang, P., Kuyper, T. W., Hoffman, E., Rosling, A., Werners, K. & Smit, E. (2003). Molecular identification of ectomycorrhizal mycelium in soil horizons. Applied Environmental Microbiology 69, 327–33.CrossRefGoogle ScholarPubMed
Lilleskov, E. A., Hobbie, E. A. & Fahey, T. J. (2002). Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytologist 154, 219–31.CrossRefGoogle Scholar
Lindahl, B. O., Taylor, A. F. S. & Finlay, R. D. (2002). Defining nutritional constraints on carbon cycling in boreal forests – towards a less ‘phytocentric’ perspective. Plant and Soil 242, 123–35.CrossRefGoogle Scholar
Michelsen, A., Quarmby, C., Sleep, D. & Jonasson, S. (1998). Vascular plant N-15 natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115, 406–18.CrossRefGoogle Scholar
Nadelhoffer, K. J. & Fry, B. (1988). Controls on natural nitrogen-15 and carbon-13 abundances in forest soil organic matter. Soil Science Society of America Journal 53, 1633–40.CrossRefGoogle Scholar
Nakano, A., Takahashi, K. & Kimura, M. (1999). The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9, 41–7.CrossRefGoogle Scholar
Paine, T. D., Raffa, K. F. & Harrington, T. C. (1997). Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology 42, 179–206.CrossRefGoogle ScholarPubMed
Pate, J. & Arthur, D. (1998). δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117, 301–11.CrossRefGoogle ScholarPubMed
Ponsard, S. & Arditi, R. (2000). What can stable isotopes (δ15N and δ13C) tell about the food web of soil macro-invertebrates? Ecology 81, 852–64.Google Scholar
Robinson, D. (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution 16, 153–62.CrossRefGoogle Scholar
Schoeninger, M. J., Iwaniec, U. T. & Nash, L. T. (1998). Ecological attributes recorded in stable isotope ratios of arboreal prosimian hair. Oecologia 113, 222–30.CrossRefGoogle ScholarPubMed
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. London: Academic Press.Google Scholar
Staddon, P. L. (2004). Carbon isotopes in functional soil ecology. Trends in Ecology and Evolution 19, 148–54.CrossRefGoogle ScholarPubMed
Tanesaka, E., Masuda, H. & Kinugawa, K. (1993). Wood degrading ability of basidiomycetes that are wood decomposers, litter decomposers, or mycorrhizal symbionts. Mycologia 85, 347–54.CrossRefGoogle Scholar
Taylor, A. F. S., Högbom, L., Högberg, M.et al. (1997). Natural 15N abundance in fruit bodies of ectomycorrhizal fungi from boreal forests. New Phytologist 136, 713–20.CrossRefGoogle Scholar
Taylor, A. F. S., Martin, F. & Read, D. J. (2000). Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies [L.] Karst.) and beech (Fagus sylvatica L.) along north-south transects in Europe. In Carbon and Nitrogen Cycling in European Forest Ecosystems, ed. Schulze, E.-D., pp. 343–65. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Taylor, A. F. S., Fransson, P. M., Högberg, P., Högberg, M. & Plamboeck, A. H. (2003). Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprotrophic fungal sporocarps. New Phytologist 159, 757–74.CrossRefGoogle Scholar
Trudell, S. A., Rygiewicz, P. T. & Edmonds, R. L. (2003). Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants. New Phytologist 160, 391–401.CrossRefGoogle Scholar
Trudell, S. A., Rygiewicz, P. T. & Edmonds, R. L. (2004). Patterns of nitrogen and carbon stable isotope ratios in macrofungi, plants and soils in two old-growth conifer forests. New Phytologist 164, 317–35.CrossRefGoogle Scholar
Worrall, J. J., Anagnost, S. E. & Zabel, R. A. (1997). Comparison of wood decay among diverse lignicolous fungi. Mycologia 89, 199–219.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×