Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T22:40:15.592Z Has data issue: false hasContentIssue false

Part One - Factors Influencing Language Development

Published online by Cambridge University Press:  11 August 2022

James Law
Affiliation:
University of Newcastle upon Tyne
Sheena Reilly
Affiliation:
Griffith University, Queensland
Cristina McKean
Affiliation:
University of Newcastle upon Tyne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Language Development
Individual Differences in a Social Context
, pp. 41 - 256
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., … Geschwind, D. H. (2008). Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. American Journal of Human Genetics, 82(1), 150159. doi:10.1016/j.ajhg.2007.09.005Google Scholar
American Speech-Language-Hearing Association (ASHA). (2007). Ad Hoc Committee on Childhood Apraxia of Speech. Rockville (MD). www.asha.org/policy/PS2007-00277/Google Scholar
Arking, D. E., Cutler, D. J., Brune, C. W., Teslovich, T. M., West, K., Ikeda, M., … Chakravarti, A. (2008). A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. American Journal of Human Genetics, 82(1), 160164. doi:10.1016/j.ajhg.2007.09.015CrossRefGoogle ScholarPubMed
Bacon, C., & Rappold, G. A. (2012). The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Human Genetics, 131(11), 16871698. doi:10.1007/s00439-012-1193-zGoogle Scholar
Barnett, C. P., & Van Bon, B. W. (2015). Monogenic and chromosomal causes of isolated speech and language impairment. Journal of Medical Genetics, 52(11), 719729. doi:10.1136/jmedgenet-2015-103161Google Scholar
Bartlett, C. W., Flax, J. F., Logue, M. W., Vieland, V. J., Bassett, A. S., Tallal, P., & Brzustowicz, L. M. (2002). A major susceptibility locus for specific language impairment is located on 13q21. American Journal of Human Genetics, 71(1), 4555. doi:10.1086/341095Google Scholar
Beckmann, J. S., Estivill, X., & Antonarakis, S. E. (2007). Copy number variants and genetic traits: Closer to the resolution of phenotypic to genotypic variability. Nature Reviews Genetics, 8(8), 639646. doi:10.1038/nrg2149Google Scholar
Beitchman, J. H., Brownlie, E. B., & Bao, L. (2014). Age 31 mental health outcomes of childhood language and speech disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 53(10), 11021110. doi:10.1016/j.jaac.2014.07.006CrossRefGoogle ScholarPubMed
Bishop, D. V. M., North, T., & Donlan, C. (1995). Genetic basis of specific language impairment: Evidence from a twin study. Developmental Medicine & Child Neurology, 37(1), 5671. doi:10.1111/j.1469-8749.1995.tb11932.xGoogle Scholar
Bishop, D. V. M., Snowling, M. J., Thompson, P. A., & Greenhalgh, T. (2016). CATALISE: A multinational and multidisciplinary Delphi consensus study: Identifying language impairments in children. PLoS ONE, 11(7). doi:10.1371/journal.pone.0158753Google Scholar
Bishop, D. V. M., Snowling, M. J., Thompson, P. A., & Greenhalgh, T. (2017). Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. Journal of Child Psychology and Psychiatry, 58(10), 10681080. doi:10.1111/jcpp.12721CrossRefGoogle ScholarPubMed
Blair, D. R., Lyttle, C. S., Mortensen, J. M., Bearden, C. F., Jensen, A. B., Khiabanian, H., … Rzhetsky, A. (2013). A nondegenerate code of deleterious variants in mendelian loci contributes to complex disease risk. Cell, 155(1), 7080. doi:10.1016/j.cell.2013.08.030CrossRefGoogle ScholarPubMed
Border, R., Johnson, E. C., Evans, L. M., Smolen, A., Berley, N., Sullivan, P. F., & Keller, M. C. (2019). No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. American Journal of Psychiatry, 176(5), 376387. doi:10.1176/appi.ajp.2018.18070881CrossRefGoogle ScholarPubMed
Bretherton, L., Prior, M., Bavin, E., Cini, E., Eadie, P., & Reilly, S. (2014). Developing relationships between language and behaviour in preschool children from the Early Language in Victoria Study: Implications for intervention. Emotional and Behavioural Difficulties, 19(1), 727. doi:10.1080/13632752.2013.854956Google Scholar
Brignell, A., Williams, K., Jachno, K., Prior, M., Reilly, S., & Morgan, A. T. (2018). Patterns and predictors of language development from 4 to 7 years in verbal children with and without Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 10, 32823295. doi:10.1007/s10803-018-3565-2Google Scholar
Carrion-Castillo, A., Van Bergen, E., Vino, A., Van Zuijen, T., de Jong, P. F., Francks, C., & Fisher, S. E. (2016). Evaluation of results from genome-wide studies of language and reading in a novel independent dataset. Genes, Brain and Behavior, 15(6), 531541. doi:10.1111/gbb.12299Google Scholar
Catroppa, C., & Anderson, V. (2004). Recovery and predictors of language skills two years following pediatric traumatic brain injury. Brain and Language, 88(1), 6878. doi:10.1016/S0093-934X(03)00159-7CrossRefGoogle ScholarPubMed
Catts, H. W., Adlof, S. M., Hogan, T. P., & Weismer, S. E. (2005). Are specific language impairment and dyslexia distinct disorders? Journal of Speech, Language, and Hearing Research, 48(6), 13781396. doi:10.1044/1092-4388(2005/096)Google Scholar
Centanni, T. M., Green, J. R., Iuzzini-Seigel, J., Bartlett, C. W., & Hogan, T. P. (2015). Evidence for the multiple hits genetic theory for inherited language impairment: A case study. Frontiers in Genetics, 6, 272. doi:10.3389/fgene.2015.00272Google Scholar
Chen, X. S., Reader, R. H., Hoischen, A., Veltman, J. A., Simpson, N. H., Francks, C., … Fisher, S. E. (2017). Next-generation DNA sequencing identifies novel gene variants and pathways involved in specific language impairment. Scientific Reports, 7, 46105. doi:10.1038/srep46105Google Scholar
Clegg, J., Hollis, C., Mawhood, L., & Rutter, M. (2005). Developmental language disorders – a follow-up in later adult life. Cognitive, language and psychosocial outcomes. Journal of Child Psychology and Psychiatry, 46(2), 128149. doi:10.1111/j.1469-7610.2004.00342.xCrossRefGoogle ScholarPubMed
Cleland, J., Wood, S., Hardcastle, W., Wishart, J., & Timmins, C. (2010). Relationship between speech, oromotor, language and cognitive abilities in children with Down’s syndrome. International Journal of Language & Communication Disorders, 45(1), 8395. doi:10.3109/13682820902745453Google Scholar
Coe, B. P., Witherspoon, K., Rosenfeld, J. A., van Bon, B. W. M., Vulto-van Silfhout, A. T., Bosco, P., … Eichler, E. E. (2014). Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nature Genetics, 46(10), 10631071. doi:10.1038/ng.3092CrossRefGoogle ScholarPubMed
Constantino, J. N. (2018). Deconstructing autism: From unitary syndrome to contributory developmental endophenotypes. International Review of Psychiatry, 30(1), 1824. doi:10.1080/09540261.2018.1433133Google Scholar
Conti-Ramsden, G., Botting, N., Simkin, Z., & Knox, E. (2001). Follow-up of children attending infant language units: Outcomes at 11 years of age. International Journal of Language & Communication Disorders, 36(2), 207219. doi:10.1080/1368282012121313682820902745453Google Scholar
Dale, P. S., Simonoff, E., Bishop, D. V., Eley, T. C., Oliver, B., Price, T. S., … Plomin, R. (1998). Genetic influence on language delay in two-year-old children. Nature Neuroscience, 1(4), 324328. doi:10.1038/1142Google Scholar
Devanna, P., Chen, X. S., Ho, J., Gajewski, D., Smith, S. D., Gialluisi, A., … Vernes, S. C. (2017). Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Molecular Psychiatry, 23(5), 13751384. doi:10.1038/mp.2017.30Google Scholar
Docking, K., Munro, N., Marshall, T., & Togher, L. (2016). Narrative skills of children treated for brain tumours: The impact of tumour and treatment related variables on microstructure and macrostructure. Brain Injury, 30(8), 10051018. doi:10.3109/02699052.2016.1147602CrossRefGoogle ScholarPubMed
Eadie, P., Conway, L., Hallenstein, B., Mensah, F. K., McKean, C., & Reilly, S. (2018). Quality of life in children with developmental language disorder. International Journal of Language & Communication Disorders, 53(4), 799810. doi:10.1111/1460-6984.12385Google Scholar
Eadie, P., Morgan, A. T., Ukoumunne, O. C., Ttofari Eecen, K., Wake, M., & Reilly, S. (2015). Speech sound disorder at 4 years: Prevalence, comorbidities, and predictors in a community cohort of children. Developmental Medicine & Child Neurology, 57(6), 578584. doi:10.1111/dmcn.12635Google Scholar
Eeles, R. A., Kote-Jarai, Z., Giles, G. G., Al Olama, A. A., Guy, M., Jugurnauth, S. K., … Easton, D. F. (2008). Multiple newly identified loci associated with prostate cancer susceptibility. Nature Genetics, 40(3), 316321. doi:10.1038/ng.90Google Scholar
Eicher, J. D., Powers, N. R., Miller, L. L., Akshoomoff, N., Amaral, D. G., Bloss, C. S., … Gruen, J. R. (2013). Genome-wide association study of shared components of reading disability and language impairment. Genes, Brain and Behavior, 12(8), 792801. doi:10.1111/gbb.12085Google Scholar
Eising, E., Carrion-Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., … Fisher, S. E. (2018). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24, 10651078. doi:10.1038/s41380-018-0020-xGoogle Scholar
Ercan-Sencicek, A. G., Davis Wright, N. R., Sanders, S. J., Oakman, N., Valdes, L., Bakkaloglu, B., … Grigorenko, E. L. (2012). A balanced t(10;15) translocation in a male patient with developmental language disorder. European Journal of Medical Genetics, 55(2), 128131. doi:10.1016/j.ejmg.2011.12.005Google Scholar
Estruch, S. B., Graham, S. A., Deriziotis, P., & Fisher, S. E. (2016). The language-related transcription factor FOXP2 is post-translationally modified with small ubiquitin-like modifiers. Scientific Reports, 6, 20911 doi:10.1038/srep20911CrossRefGoogle ScholarPubMed
Evans, P. D., Mueller, K. L., Gamazon, E. R., Cox, N. J., & Tomblin, J. B. (2015). A genome-wide sib-pair scan for quantitative language traits reveals linkage to chromosomes 10 and 13. Genes, Brain and Behavior, 14(5), 387397. doi:10.1111/gbb.12223Google Scholar
Ewing-Cobbs, L., & Barnes, M. (2002). Linguistic outcomes following traumatic brain injury in children. Seminars in Pediatric Neurology, 9(3), 209217. doi:10.1053/spen.2002.35502Google Scholar
Falcaro, M., Pickles, A., Newbury, D. F., Addis, L., Banfield, E., Fisher, S. E., … SLI Consortium. (2008). Genetic and phenotypic effects of phonological short‐term memory and grammatical morphology in specific language impairment. Genes, Brain and Behavior, 7(4), 393402. doi:10.1111/j.1601-183X.2007.00364.xGoogle Scholar
Fedorenko, E., Morgan, A., Murray, E., Cardinaux, A., Mei, C., Tager-Flusberg, H., … Kanwisher, N. (2016). A highly penetrant form of childhood apraxia of speech due to deletion of 16p11.2. European Journal of Human Genetics, 24(2), 302306. doi:10.1038/ejhg.2015.149CrossRefGoogle ScholarPubMed
Feuk, L., Kalervo, A., Lipsanen-Nyman, M., Skaug, J., Nakabayashi, K., Finucane, B., … Hannula-Jouppi, K. (2006). Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. American Journal of Human Genetics, 79(5), 965972 doi:10.1086/508902Google Scholar
Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25(4), 166177. doi:10.1016/j.tig.2009.03.002Google Scholar
Franic, S., Groen-Blokhuis, M. M., Dolan, C. V., Kattenberg, M. V., Pool, R., Xiao, X., … Boomsma, D. I. (2015). Intelligence: Shared genetic basis between Mendelian disorders and a polygenic trait. European Journal of Human Genetics, 23(10), 13781383 doi:10.1038/ejhg.2015.3Google Scholar
Gialluisi, A., Andlauer, T. F. M., Mirza-Schreiber, N., Moll, K., Becker, J., Hoffmann, P., … Schulte-Körne, G. (2019). Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Translational Psychiatry, 9(77), 177. doi:10.1038/s41398-019-0402-0Google Scholar
Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Olson, R. K., DeFries, J. C., Brandler, W. M., … Fisher, S. E. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13(7), 686701. doi:10.1111/gbb.12158CrossRefGoogle ScholarPubMed
Graham, S. A., & Fisher, S. E. (2013). Decoding the genetics of speech and language. Current Opinions in Neurobiology, 23(1), 4351. doi:10.1016/j.conb.2012.11.006Google Scholar
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., & Børglum, A. D. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51(3), 431444. doi:10.1038/s41588-019-0344-8Google Scholar
Gunasekara, C. J., Scott, C. A., Laritsky, E., Baker, M. S., MacKay, H., Duryea, J. D., … Waterland, R. A. (2019). A genomic atlas of systemic interindividual epigenetic variation in humans. Genome Biology, 20(1), 105116. doi:10.1186/s13059-019-1708-1Google Scholar
Haarbauer-Krupa, J., King, T. Z., Wise, J., Gillam, S., Trapani, J., Weissman, B., & DePompei, R. (2019). Early elementary school outcome in children with a history of traumatic brain injury before age 6 years. The Journal of Head Trauma Rehabilitation, 34(2), 111121. doi:10.1097/HTR.0000000000000414CrossRefGoogle ScholarPubMed
Hamdan, F. F., Daoud, H., Rochefort, D., Piton, A., Gauthier, J., Langlois, M., … Michaud, J. L. (2010). De novo mutations in foxp1 in cases with intellectual disability, autism, and language impairment. American Journal of Human Genetics, 87(8), 671678. doi:10.1016/j.ajhg.2010.09.017CrossRefGoogle ScholarPubMed
Harlaar, N., Meaburn, E. L., Hayiou-Thomas, M. E., Wellcome Trust Case Control Consortium, Davis, O. S., Docherty, S., … Plomin, R. (2014). Genome-wide association study of receptive language ability of 12-year-olds. Journal of Speech Language and Hearing Research, 57(1), 96105. doi:10.1044/1092-4388(2013/12-0303)Google Scholar
Hayiou-Thomas, M. E., Oliver, B., & Plomin, R. (2005). Genetic influences on specific versus nonspecific language impairment in 4-year-old twins. Journal of Learning Disabilities, 38(3), 222232. doi:10.1177/00222194050380030401Google Scholar
Heijmans, B. T., Tobi, E. W., Stein, A. D., Putter, H., Blauw, G. J., Susser, E. S., … Lumey, L. H. (2008). Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proceeding of the National Academy of Science USA, 105(44), 1704617049. doi:10.1073/pnas.0806560105Google Scholar
Horn, D., Kapeller, J., Rivera-Brugués, N., Moog, U., Lorenz-Depiereux, B., Eck, S., … Strom, T. M. (2010). Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits. Human Mutation, 31(11), e1851–1860. doi:10.1002/humu.21362Google Scholar
Kalnak, N., Stamouli, S., Peyrard-Janvid, M., Rabkina, I., Becker, M., Klingberg, T., … Tammimies, K. (2018). Enrichment of rare copy number variation in children with developmental language disorder. Clinical Genetics, 94(3–4), 313320. doi:10.1111/cge.13389CrossRefGoogle ScholarPubMed
Koolen, D. A, Vissers, L. E., Nillesen, W., Smeets, D., van Ravenswaaij, C. M., Sistermans, E. A., … de Vries, B. B. (2004). A novel microdeletion, del(2)(q22.3q23.3) in a mentally retarded patient, detected by array-based comparative genomic hybridization. Clinical Genetics, 65(5), 429429. doi:10.1111/j.0009-9163.2004.00245.xCrossRefGoogle Scholar
Kornilov, S. A., Rakhlin, N., Koposov, R., Lee, M., Yrigollen, C., Caglayan, A. O., … Grigorenko, E. L. (2016). Genome-wide association and exome sequencing study of language disorder in an isolated population. Pediatrics, 137(4), e20152469. doi:10.1542/peds.2015-2469Google Scholar
Kraft, S. J., & DeThorne, L. S. (2014). The brave new world of epigenetics: Embracing complexity in the study of speech and language disorders. Current Developmental Disorders Reports, 1(3), 207214. doi:10.1007/s40474-014-0024-4Google Scholar
Krapohl, E., Patel, H., Newhouse, S., Curtis, C. J., von Stumm, S., Dale, P. S., … Plomin, R. (2018). Multi-polygenic score approach to trait prediction. Molecular Psychiatry, 23(5), 13681374. doi:10.1038/mp.2017.163Google Scholar
Küpers, L. K., Monnereau, C., Sharp, G. C., Yousefi, P., Salas, L. A., Ghantous, A., … Felix, J. F. (2019). Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nature Communications, 10(1), 18931904. doi:10.1038/s41467-019-09671-3Google Scholar
Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519523. doi:10.1038/35097076CrossRefGoogle Scholar
Lambert, J. C., Heath, S., Even, G., Campion, D., Sleegers, K., Hiltunen, M., … Amouyel, P. (2009). Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nature Genetics, 41(10), 10941099. doi:10.1038/ng.439Google Scholar
Law, J., Mcbean, L., & Rush, R. (2011). Communication skills in a population of primary school-aged children raised in an area of pronounced social disadvantage. International Journal of Language & Communication Disorders, 46(6), 657664. doi:10.1111/j.1460-6984.2011.00036.xGoogle Scholar
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., … Cesarini, D. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 11121121. doi:10.1038/s41588-018-0147-3CrossRefGoogle ScholarPubMed
Le Gall, J., Nizon, M., Pichon, O., Andrieux, J., Audebert-Bellanger, S., Baron, S., … Busa, T. (2017). Sex chromosome aneuploidies and copy-number variants: A further explanation for neurodevelopmental prognosis variability? European Journal of Human Genetics, 25(8), 930934. doi:10.1038/ejhg.2017.93Google Scholar
Lennon, P. A., Cooper, M. L., Peiffer, D. A., Gunderson, K. L., Patel, A., Peters, S., … Bacino, C. A. (2007). Deletion of 7q31.1 supports involvement of foxp2 in language impairment: Clinical report and review. American Journal of Medical Genetics Part A, 143a(8), 791798. doi:10.1002/ajmg.a.31632Google Scholar
Lewis, B. A., & Thompson, L. A. (1992). A study of developmental speech and language disorders in twins. Journal of Speech Hearing Research, 35(5), 10861094. doi:10.1044/jshr.3505.1086Google Scholar
Liégeois, F. J., Mahony, K., Connelly, A., Pigdon, L., Tournier, J. D., & Morgan, A. T. (2013). Pediatric traumatic brain injury: Language outcomes and their relationship to the arcuate fasciculus. Brain and Language, 127(3), 388398.Google Scholar
Liégeois, F. J., Turner, S. J., Mayes, A., Bonthrone, A. F., Boys, A., Smith, L., … Morgan, A. T. (2019). Dorsal language stream anomalies in an inherited speech disorder. Brain, 142(4), 966977.Google Scholar
Lionel, A. C., Crosbie, J., Barbosa, N., Goodale, T., Thiruvahindrapuram, B., Rickaby, J., … Scherer, S. W. (2011). Rare copy number variation discovery and cross-disorder comparisons identify risk genes for ADHD. Science Translational Medicine, 3(95), 95ra75. doi:10.1126/scitranslmed.3002464Google Scholar
Locke, A., Ginsborg, J., & Peers, I. (2002). Development and disadvantage: Implications for the early years and beyond. International Journal of Language & Communication Disorders, 37(1), 315. doi:10.1080/13682820110089911Google Scholar
Lozano, R., Vino, A., Lozano, C., Fisher, S. E., & Deriziotis, P. (2015). A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. European Journal of Human Genetics, 23(12), 17021707. doi:10.1038/ejhg.2015.66Google Scholar
Luciano, M., Evans, D. M., Hansell, N. K., Medland, S. E., Montgomery, G. W., Martin, N. G., … Bates, T. C. (2013). A genome-wide association study for reading and language abilities in two population cohorts. Genes, Brain and Behavior, 12(6), 645652. doi:10.1111/gbb.12053Google Scholar
MacDermot, K. D., Bonora, E., Sykes, N., Coupe, A. M., Lai, C. S., Vernes, S. C., … Fisher, S. E. (2005). Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits. American Journal of Human Genetics, 76(6), 10741080. doi:10.1086/430841Google Scholar
McKean, C., Reilly, S., Bavin, E. L., Bretherton, L., Cini, E., Conway, L., … Mensah, F. (2017). Language outcomes at 7 years: Early predictors and co-occurring difficulties. Pediatrics, 139(3), e20161684. doi:10.1542/peds.2016-1684Google Scholar
Mei, C., Fedorenko, E., Amor, D. J., Boys, A., Hoeflin, C., Carew, P., … Morgan, A. T. (2018). Deep phenotyping of speech and language skills in individuals with 16p11.2 deletion. European Journal of Human Genetics, 26(5), 676686. doi:10.1038/s41431-018-0102-xGoogle Scholar
Mei, C., Reilly, S., Reddihough, D., Mensah, F., Pennington, L., & Morgan, A. T. (2016). Language outcomes of children with cerebral palsy aged 5 years and 6 years: A population-based study. Developmental Medicine and Child Neurology, 58(6), 605611. doi:10.1111/dmcn.12957Google Scholar
Moralli, D., Nudel, R., Chan, M. T. M., Green, C. M., Volpi, E. V., Benítez-Burraco, A., … García-Bellido, P. (2015). Language impairment in a case of a complex chromosomal rearrangement with a breakpoint downstream of FOXP2. Molecular Cytogenetics, 8(1), 36. doi:10.1186/s13039-015-0148-1Google Scholar
Morgan, A. T., Fisher, S. E., Scheffer, I. E., & Hildebrand, M. (2017). FOXP2-related speech and language disorders. Seattle, WA: University of Washington. Available at GeneReviews®, www.ncbi.nlm.nih.gov/books/NBK368474/Google Scholar
Morgan, A. T., Mei, C., Da Costa, A., Fifer, J., Lederer, D., Benoit, V., … White, S. M. (2015). Speech and language in a genotyped cohort of individuals with Kabuki syndrome. American Journal of Medical Genetics, Part A, 167(7), 14831492.CrossRefGoogle Scholar
Morgan, A. T., van Haaften, L., van Hulst, K., Edley, C., Mei, C., Tan, T. Y., … Koolen, D. A. (2018). Early speech development in Koolen de Vries syndrome limited by oral praxis and hypotonia. European Journal of Human Genetics, 26, 7584. doi:10.1038/s41431-017-0035-9Google Scholar
Mountford, H. S., & Newbury, D. F. (2018). The genomic landscape of language: insights into evolution. Journal of Language Evolution, 3(1), 4958. doi:10.1093/jole/lzx019Google Scholar
Newbury, D. F., Gibson, J. L., Conti-Ramsden, G., Pickles, A., Durkin, K., & Toseeb, U. (2019). Using polygenic profiles to predict variation in language and psychosocial outcomes in early and middle childhood. Journal of Speech, Language, and Hearing Research, 62, 3381–3396. epub ahead of print. doi:10.1044/2019_JSLHR-L-19-0001CrossRefGoogle Scholar
Newbury, D. F., Mari, F., Sadighi Akha, E., MacDermot, K. D., Canitano, R., Monaco, A. P., … Knight, S. J. (2013). Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. European Journal of Human Genetics, 21(4), 361365. doi:10.1038/ejhg.2012.166Google Scholar
Newbury, D. F., Paracchini, S., Scerri, T. S., Winchester, L., Addis, L., Richardson, A. J., … Monaco, A. P. (2011). Investigation of dyslexia and SLI risk variants in reading- and language-impaired subjects. Behavior Genetics, 41(1), 90104. doi:10.1007/s10519-010-9424-3Google Scholar
Newbury, D. F., Winchester, L., Addis, L., Paracchini, S., Buckingham, L.-L., Clark, A., … Monaco, A. P. (2009). CMIP and ATP2C2 modulate phonological short-term memory in language impairment. American Journal of Human Genetics, 85(2), 264272. doi:10.1016/j.ajhg.2009.07.004Google Scholar
Nicolia, V., Cavallaro, R. A., López-González, I., Maccarrone, M., Scarpa, S., Ferrer, I., & Fuso, A. (2017). DNA methylation profiles of selected pro-inflammatory cytokines in Alzheimer disease. Journal of Neuropathology & Experimental Neurology, 76(1), 2731. doi:10.1093/jnen/nlw099Google Scholar
Nudel, R., Simpson, N. H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P. F., … Newbury, D. F. (2014). Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes, Brain and Behavior, 13(4), 418429. doi:10.1111/gbb.12127Google Scholar
O’Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan, S., … Eichler, E. E. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43(6), 585589. doi:10.1038/ng.835CrossRefGoogle ScholarPubMed
Park, G., Tan, J., Garcia, G., Kang, Y., Salvesen, G., & Zhang, Z. (2016). Regulation of histone acetylation by autophagy in Parkinson disease. Journal of Biological Chemistry, 291(7), 35313540. doi:10.1074/jbc.M115.675488Google Scholar
Peter, B., Matsushita, M., Oda, K., & Raskind, W. (2014). De novo microdeletion of BCL11A is associated with severe speech sound disorder. American Journal of Medical Genetics Part A, 164a(8), 20912096. doi:10.1002/ajmg.a.36599Google Scholar
Peter, B., Raskind, W. H., Matsushita, M., Lisowski, M., Vu, T., Berninger, V. W., … Brkanac, Z. (2011). Replication of CNTNAP2 association with nonword repetition and support for FOXP2 association with timed reading and motor activities in a dyslexia family sample. Journal of Neurodevelopmental Disorders, 3(1), 3949. doi:10.1007/s11689-010-9065-0Google Scholar
Raca, G., Baas, B. S., Kirmani, S., Laffin, J. J., Jackson, C. A., Strand, E. A., … Shriberg, L. D. (2013). Childhood apraxia of speech (CAS) in two patients with 16p11.2 microdeletion syndrome. European Journal of Human Genetics, 21(4), 455459 doi:10.1038/ejhg.2012.165CrossRefGoogle ScholarPubMed
Reader, R. H., Covill, L. E., Nudel, R., & Newbury, D. F. (2014). Genome-wide studies of specific language impairment. Current Behavioral Neuroscience Reports, 1(4), 242250. doi:10.1007/s40473-014-0024-zCrossRefGoogle ScholarPubMed
Reilly, S., Tomblin, B., Law, J., McKean, C., Mensah, F. K., Morgan, A. T., … Wake, M. (2014). Specific language impairment: A convenient label for whom? International Journal of Language & Communication Disorders, 49(4), 416451. doi:10.1111/1460-6984.12102Google Scholar
Reilly, S., Wake, M., Bavin, E. L., Prior, M., Williams, J., Bretherton, L., … Ukoumunne, O. C. (2007). Predicting language at 2 years of age: A prospective community study. Pediatrics, 120(6), 14411449. doi:10.1542/peds.2007-0045Google Scholar
Reilly, S., Wake, M., Ukoumunne, O. C., Bavin, E., Prior, M., Cini, E., … Bretherton, L. (2010). Predicting language outcomes at 4 years of age: Findings from the Early Language in Victoria Study. Pediatrics, 126(6), 15301537. doi:10.1542/peds.2010-0254Google Scholar
Reuter, M. S., Riess, A., Moog, U., Briggs, T. A., Chandler, K. E., Rauch, A., … Zweier, C. (2017). FOXP2 variants in 14 individuals with developmental speech and language disorders broaden the mutational and clinical spectrum. Journal of Medical Genetics, 54(1), 6472. doi:10.1136/jmedgenet-2016-104094Google Scholar
Rice, M. L. (2012). Toward epigenetic and gene regulation models of specific language impairment: Looking for links among growth, genes, and impairments. Journal of Neurodevelopmental Disorders, 4(1), 27. doi:10.1186/1866-1955-4-27Google Scholar
Rietveld, C. A., Medland, S. E., Derringer, J., Yang, J., Esko, T., Martin, N. W., … Koellinger, P. D. (2013). GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science, 340(6139), 14671471. doi:10.1126/science.1235488Google Scholar
Ripke, S., Neale, B. M., Corvin, A., Walters, J. T. R., Farh, K.-H., Holmans, P. A., … O’Donovan, M. C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421427.Google Scholar
Rocca, M. S., Pecile, V., Cleva, L., Speltra, E., Selice, R., Di Mambro, A., … Ferlin, A. (2016). The Klinefelter syndrome is associated with high recurrence of copy number variations on the X chromosome with a potential role in the clinical phenotype. Andrology, 4(2), 328334. doi:10.1111/andr.12146Google Scholar
Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., … State, M. A. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87(6), 12151233. doi:10.1016/j.neuron.2015.09.016Google Scholar
Scerri, T. S., Morris, A. P., Buckingham, L. L., Newbury, D. F., Miller, L. L., Monaco, A. P., … Paracchini, S. (2011). DCDC2, KIAA0319 and CMIP are associated with reading-related traits. Biological Psychiatry, 70(3), 237245. doi:10.1016/j.biopsych.2011.02.005Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421427. doi: 10.1038/nature13595CrossRefGoogle Scholar
Sciberras, E., Mueller, K. L., Efron, D., Bisset, M., Anderson, V., Schilpzand, E. J., … Nicholson, J. M. (2014). Language problems in children with ADHD: A community-based study. Pediatrics, 5, 793800. doi:10.1542/peds.2013-3355Google Scholar
Shriberg, L. D., Tomblin, J. B., & McSweeny, J. L. (1999). Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. Journal of Speech, Language, and Hearing Research, 42(6), 14611481. doi:10.1044/jslhr.4206.1461Google Scholar
Simpson, N. H., Ceroni, F., Reader, R. H., Covill, L. E., Knight, J. C., SLI Consortium, … Newbury, D. F. (2015). Genome-wide analysis identifies a role for common copy number variants in specific language impairment. European Journal of Human Genetics, 23(10), 13701377. doi:10.1038/ejhg.2014.296CrossRefGoogle ScholarPubMed
SLI Consortium. (2002). A genomewide scan identifies two novel loci involved in specific language impairment. American Journal of Human Genetics, 70(2), 384398. doi:10.1086/338649Google Scholar
Smith, S. D. (2011). Approach to epigenetic analysis in language disorders. Journal of Neurodevelopmental Disorders, 3(4), 356364. doi:10.1007/s11689-011-9099-yGoogle Scholar
Snijders Blok, L., Rousseau, J., Twist, J., Ehresmann, S., Takaku, M., Venselaar, H., … Campeau, P. M. (2018). CHD3 helicase domain mutations cause a neurodevelopmental syndrome with macrocephaly and impaired speech and language. Nature Communications, 9(1), 4619. doi:10.1038/s41467-018-06014-6CrossRefGoogle Scholar
Soblet, J., Dimov, I., Graf von Kalckreuth, C., Cano-Chervel, J., Baijot, S., Pelc, K., … Deconinck, N. (2018). BCL11a frameshift mutation associated with dyspraxia and hypotonia affecting the fine, gross, oral, and speech motor systems. American Journal of Medical Genetics Part A, 176(1), 201208. doi:10.1002/ajmg.a.38479Google Scholar
Sollis, E., Graham, S. A., Vino, A., Froehlich, H., Vreeburg, M., Dimitropoulou, D., … Fisher, S. E. (2015). Identification and functional characterization of de novo FOXP1 variants provides novel insights into the etiology of neurodevelopmental disorder. Human Molecular Genetics, 25(3), 546557. doi:10.1093/hmg/ddv495Google Scholar
Spinath, F. M., Price, T. S., Dale, P. S., & Plomin, R. (2004). The genetic and environmental origins of language disability and ability. Child Development, 75(2), 445454. doi:10.1111/j.1467-8624.2004.00685.xCrossRefGoogle ScholarPubMed
Srivastava, S., Cohen, J. S., Vernon, H., Baranano, K., McClellan, R., Jamal, L., … Fatemi, A. (2014). Clinical whole exome sequencing in child neurology practice. Annals of Neurology, 76(4), 473483. doi:10.1002/ana.24251CrossRefGoogle ScholarPubMed
St Clair, M. C., Pickles, A., Durkin, K., & Conti-Ramsden, G. (2011). A longitudinal study of behavioral, emotional and social difficulties in individuals with a history of specific language impairment (SLI). Journal of Communication Disorders, 44(2), 186199. doi:10.1016/j.jcomdis.2010.09.004Google Scholar
St John, M., Ponchard, C., van Reyk, O., Mei, C., Pigdon, L., Amor, D. J., & Morgan, A. T. (2019). Speech and language in children with Klinefelter syndrome. Journal of Communication Disorders, 78, 8496. doi:10.1016/j.jcomdis.2019.02.003Google Scholar
St Pourcain, B., Cents, R. A. M., Whitehouse, A. J. O., Haworth, C. M. A., Davis, O. S. P., O’Reilly, P. F., … Smith, G. D. (2014). Common variation near ROBO2 is associated with expressive vocabulary in infancy. Nature Communications, 5(5), 4831. doi:10.1038/ncomms5831Google Scholar
Stromswold, K. (1998). Genetics of spoken language disorders. Human Biology, 70(2), 297324. www.jstor.org/stable/41465640Google Scholar
The 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526(7571), 6874. doi:10.1038/nature15393Google Scholar
Thevenon, J., Callier, P., Andrieux, J., Delobel, B., David, A., Sukno, S., … Faivre, L. (2013). 12p13.33 microdeletion including ELKS/ERC1, a new locus associated with childhood apraxia of speech. European Journal of Human Genetics, 21(1), 8288. doi:10.1038/ejhg.2012.116Google Scholar
Tomblin, J. B., O’Brien, M., Shriberg, L. D., Williams, C., Murray, J., Patil, S., … Ballard, K. (2009). Language features in a mother and daughter of a chromosome 7;13 translocation involving FOXP2. Journal of Speech Language and Hearing Research, 52(5), 11571174. doi:10.1044/1092-4388(2009/07-0162)Google Scholar
Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language, and Hearing Research, 40(6), 12451260. doi:10.1044/jslhr.4006.1245Google Scholar
Turner, S. J., Hildebrand, M. S., Block, S., Damiano, J., Fahey, M., Reilly, S., … Morgan, A. T. (2013). Small intragenic deletion in foxp2 associated with childhood apraxia of speech and dysarthria. American Journal of Medical Genetics Part A, 161a(9), 23212326. doi:10.1002/ajmg.a.36055Google Scholar
Van der Aa, N., Vandeweyer, G., Reyniers, E., Kenis, S., Dom, L., Mortier, G., … Kooy, R. F. (2012). Haploinsufficiency of CMIP in a girl with autism spectrum disorder and developmental delay due to a de novo deletion on chromosome 16q23.2. Autism Research, 5(4), 277281. doi:10.1002/aur.1240Google Scholar
Van Ijzendoorn, M. H., Belsky, J., & Bakermans-Kranenburg, M. J. (2012). Serotonin transporter genotype 5HTTLPR as a marker of differential susceptibility? A meta-analysis of child and adolescent gene-by-environment studies. Translational Psychiatry, 2, e147. doi:10.1038/tp.2012.73Google Scholar
Veltman, J. A., & Brunner, H. G. (2010). Understanding variable expressivity in microdeletion syndromes. Nature Genetics, 42(3), 192193. doi:10.1038/ng0310-192Google Scholar
Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., … Fisher, S. E. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359(22), 23372345. doi:10.1056/NEJMoa0802828Google Scholar
Villanueva, P., Newbury, D. F., Jara, L., De Barbieri, Z., Mirza, G., Palomino, H. M., … Palomino, H. (2011). Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population. European Journal of Human Genetics, 19, 687695. doi:10.1038/ejhg.2010.251Google Scholar
Virgin, H. W., & Todd, J. A. (2011). Metagenomics and personalized medicine. Cell, 147(1), 4456. doi:10.1016/j.cell.2011.09.009Google Scholar
Wainschtein, P., Jain, D., Zheng, Z., TOPMed Anthropometry Working Group, Cupples, L. A., Shadyab, A. H., … Visscher, P. M. (2019). Recovery of trait heritability from whole genome sequence data. bioRxiv, 588020. doi:10.1101/588020Google Scholar
Wake, M., Poulakis, Z., Hughes, E. K., Carey-Sargeant, C., & Rickards, F. W. (2005). Hearing impairment: A population study of age at diagnosis, severity, and language outcomes at 7–8 years. Archives of Disease in Childhood, 90(3), 238244. doi:10.1136/adc.2003.039354CrossRefGoogle ScholarPubMed
White, S. M., Morgan, A. T., Da Costa, A., Lacombe, D., Knight, S. J. L., Houlston, R., … Hurst, J. A. (2010). The phenotype of Floating-Harbor syndrome in 10 patients. American Journal of Medical Genetics, Part A, 152A(4), 821829. doi:10.1002/ajmg.a.33294Google Scholar
Whitehouse, A. J., Bishop, D. V., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10(4), 451456. doi:10.1111/j.1601-183X.2011.00684.xGoogle Scholar
World Health Organisation. (2010). ICD-10: International statistical classification of diseases and related health problems (10th rev. ed.). Geneva: World Health Organization. https://icd.who.int/browse10/2010/en#/F80-F89Google Scholar
Zeesman, S., Nowaczyk, M. J., Teshima, I., Roberts, W., Cardy, J. O., Brian, J., … Scherer, S. W. (2006). Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2. American Journal of Medical Genetics Part A, 140(5), 509514. doi:10.1002/ajmg.a.31110Google Scholar

References

Allen, T. E. (1986). Patterns of academic achievement among hearing impaired students: 1974 and 1983. In Karchmer, M. (Ed.), Deaf children in America. San Diego, CA: College Hill Press.Google Scholar
Ambrose, S. E., Walker, E. A., Unflat-Berry, L. M., Oleson, J. J., & Moeller, M. P. (2015). Quantity and quality of caregivers’ linguistic input to 18-month and 3-year-old children who are hard of hearing. Ear and Hearing, 36(S1), 48S59S.Google Scholar
Aragon, M., & Yoshinaga-Itano, C. (2012). Using language environment analysis to improve outcomes for children who are deaf or hard of hearing. Seminars in Speech and Language, 33, 340353.Google Scholar
Australian Government. (2016). Declared Hearing Services Determination 1997 made under subsection 8 (4), (5), (6), (7) and (8) of the Australian Hearing Services Act 1991. In Counsel, O. o. P. (ed.). Canberra.Google Scholar
Cai, T., & McPherson, B. (2017). Hearing loss in children with otitis media with effusion: A systematic review. International Journal of Audiology, 56, 6576.Google Scholar
Carew, P., Mensah, F. K., Rance, G., Flynn, T., Poulakis, Z., & Wake, M. (2017). Mild–moderate congenital hearing loss: Secular trends in outcomes across four systems of detection. Child: Care, Health and Development, 44(1), 7182.Google Scholar
Chin, M. H., Alexander-Young, M., & Burnet, D. L. (2009). Health care quality-improvement approaches to reducing child health disparities. Pediatrics, 124(S3), S224S236.Google Scholar
Ching, T. Y. C. (2015). Is early intervention effective in improving spoken language outcomes of children with congenital hearing loss? American Journal of Audiology, 24, 345348.CrossRefGoogle ScholarPubMed
Ching, T. Y., & Dillon, H. (2013). Major findings of the LOCHI study on children at 3 years of age and implications for audiological management. International Journal of Audiology, 52(S2), S65S68.Google Scholar
Ching, T. Y. C., Dillon, H., Button, L., Seeto, M., Van Buynder, P., Marnane, V., … Leigh, G. (2017). Age at intervention for permanent hearing loss and 5-year language outcomes. Pediatrics, 140, e20164274.Google Scholar
Ching, T. Y., Leigh, G., & Dillon, H. (2013). Introduction to the Longitudinal Outcomes of Children with Hearing Impairment (LOCHI) study: Background, design, sample characteristics. International Journal of Audiology, 52(S2), S4S9.Google Scholar
Colgan, S., Gold, L., Wirth, K., Ching, T., Poulakis, Z., Rickards, F., & Wake, M. (2012). The cost-effectiveness of universal newborn screening for bilateral permanent congenital hearing impairment: Systematic review. Academic Pediatrics, 12, 171180.Google Scholar
Cupples, L., Ching, T. Y., Crowe, K., Seeto, M., Leigh, G., Street, L., … Thomson, J. (2014). Outcomes of 3-year-old children with hearing loss and different types of additional disabilities. Journal of Deaf Studies and Deaf Education, 19, 2039.Google Scholar
DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208, 11741176.Google Scholar
Donnellan, E., Bannard, C., McGillion, M. L., Slocombe, K. E., & Matthews, D. (2019). Infants’ intentionally communicative vocalizations elicit responses from caregivers and are the best predictors of the transition to language: A longitudinal investigation of infants’ vocalizations, gestures and word production. Developmental Science, 23, e12843.Google Scholar
Fernald, A., Marchman, V. A., & Weisleder, A. (2013). SES differences in language processing skill and vocabulary are evident at 18 months. Developmental Science, 16, 234248.Google Scholar
Fitzpatrick, E. M., Hamel, C., Stevens, A., Pratt, M., Moher, D., Doucet, S. P., … Na, E. (2016). Sign language and spoken language for children with hearing loss: A systematic review. Pediatrics, 137, e20151974.Google Scholar
Flores, G. (2009). Devising, implementing, and evaluating interventions to eliminate health care disparities in minority children. Pediatrics, 124(S3), S214S223.Google Scholar
Fortnum, H., & Davis, A. (1997). Epidemiology of permanent childhood hearing impairment in Trent Region, 1985–1993. British Journal of Audiology, 31, 409446.Google Scholar
Fortnum, H. M., Summerfield, A. Q., Marshall, D. H., Davis, A. C., & Bamford, J. M. (2001). Prevalence of permanent childhood hearing impairment in the United Kingdom and implications for universal neonatal hearing screening: Questionnaire based ascertainment study. British Medical Journal, 323, 536540.Google Scholar
Gallaudet Research Institute. (2002). Regional and national summary report of data from the 2000–2001 annual survey of deaf and hard of hearing children & youth. Washington, DC: Gallaudet University.Google Scholar
Gilkerson, J., Richards, J. A., Warren, S. F., Montgomery, J. K., Greenwood, C. R., Kimbrough Oller, D., … Paul, T. D. (2017). Mapping the early language environment using all-day recordings and automated analysis. American Journal of Speech-Language Pathology, 26, 248265.Google Scholar
Gravel, J. S., & Wallace, I. F. (1992). Listening and language at 4 years of age: Effects of early otitis media. Journal of Speech, Language, and Hearing Research, 35, 588595.Google Scholar
Hall, J. W. III. (2000). Handbook of otoacoustic emissions. San Diego, CA: Singular.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children, Baltimore, MD: Paul H. Brookes Publishing.Google Scholar
Hecox, K., & Galambos, R. (1974). Brainstem auditory evoked responses in human infants and adults. Archives of Otolaryngology, 99, 3033.Google Scholar
Holstrum, W. J., Biernath, K., McKay, S., & Ross, D. S. (2009). Mild and unilateral hearing loss: Implications for early intervention. Infants & Young Children, 22, 177187.Google Scholar
Hunter, L. L., Meinzen-Derr, J., Wiley, S., Horvath, C. L., Kothari, R., & Wexelblatt, S. (2016). Influence of the WIC program on loss to follow-up for newborn hearing screening. Pediatrics, 138, e20154301.Google Scholar
Joint Committee on Infant Hearing of the American Academy of Pediatrics. (1982). American Academy of Pediatrics Joint Committee on Infant hearing: Position statement 1982. Pediatrics, 70, 496497.Google Scholar
Joint Committee on Infant Hearing of the American Academy of Pediatrics. (1994). Joint Committee on Infant Hearing: 1994 position statement. ASHA, 36, 3841.Google Scholar
Kennedy, C., & McCann, D. (2004). Universal neonatal hearing screening moving from evidence to practice. Archives of Disease in Childhood: Fetal and Neonatal Edition, 89(5), F378F383.Google Scholar
Kennedy, C. R., McCann, D. C., Campbell, M. J., Law, C. M., Mullee, M., … Stevenson, J. (2006). Language ability after early detection of permanent childhood hearing impairment. New England Journal of Medicine, 354, 21312141.Google Scholar
Keogh, T., Kei, J., Driscoll, C., & Khan, A. (2010). Children with minimal conductive hearing impairment: Speech comprehension in noise. Audiology and Neurotology, 15, 2735.Google Scholar
Kramer, S. E., Kapteyn, T. S., & Houtgast, T. (2006). Occupational performance: Comparing normally-hearing and hearing-impaired employees using the Amsterdam Checklist for Hearing and Work. International Journal of Audiology, 45, 503512.Google Scholar
Lai, F. Y., Serraglio, C., & Martin, J. A. (2014). Examining potential barriers to early intervention access in Australian hearing impaired children. International Journal of Pediatric Otorhinolaryngology, 78, 507512.Google Scholar
Lederberg, A. R., Schick, B., & Spencer, P. E. (2013). Language and literacy development of deaf and hard-of-hearing children: Successes and challenges. Developmental Psychology, 49, 1530.Google Scholar
Limb, S. J., McManus, M. A., Fox, H. B., White, K. R., & Forsman, I. (2010). Ensuring financial access to hearing AIDS for infants and young children. Pediatrics, 126(S1), S43S51.Google Scholar
Mampe, B., Friederici, A. D., Christophe, A., & Wermke, K. (2009). Newborns’ cry melody is shaped by their native language. Current Biology, 19, 19941997.Google Scholar
Mandel, E. M., Doyle, W. J., Winther, B., & Alper, C. M. (2008). The incidence, prevalence and burden of OM in unselected children aged 1–8 years followed by weekly otoscopy through the ‘common cold’ season. International Journal of Pediatric Otorhinolaryngology, 72, 491499.Google Scholar
Martin, J. A., Bentzen, O., Colley, J. R., Hennebert, D., Holm, C., Iurato, S. … Morgon, A. (1981). Childhood deafness in the European community. Scandinavian Audiology, 10, 165174.Google Scholar
McCreery, R., Bentler, R., & Roush, P. (2013). Characteristics of hearing aid fittings in infants and young children. Ear and Hearing, 34, 701710.Google Scholar
Mitchell, R. E., & Karchmer, M. A. (2004). Chasing the mythical ten percent: Parental hearing status of deaf and hard of hearing students in the United States. Sign Language Studies, 4(2),138163.Google Scholar
Muñoz, K., Olson, W. A., Twohig, M. P., Preston, E., Blaiser, K., & White, K. R. (2014). Pediatric hearing aid use: Parent-reported challenges. Ear and Hearing, 36(2), 279287.Google Scholar
National Health Service. (2015). How can I get an NHS hearing aid? www.nhs.uk/chq/Pages/894.aspxGoogle Scholar
Niparko, J. K., Tobey, E. A., Thal, D. J., Eisenberg, L. S., Wang, N. Y., Quittner, A. L., & Fink, N. E. (2010). Spoken language development in children following cochlear implantation. JAMA, 303, 14981506.Google Scholar
Nittrouer, S. (1996). The relation between speech perception and phonemic awareness: Evidence from low-SES children and children with chronic OM. Journal of Speech and Hearing Research, 39, 10591070.Google Scholar
Paradise, J. L., Dollaghan, C. A., Campbell, T. F., Feldman, H. M., Bernard, B. S., Colborn, D. K., … Smith, C. G. (2000). Language, speech sound production, and cognition in three-year-old children in relation to otitis media in their first three years of life. Pediatrics, 105, 11191130.Google Scholar
Paradise, J. L., Feldman, H. M., Campbell, T. F., Dollaghan, C. A., Rockette, H. E., Pitcairn, D. L., … Pelham, W. E. (2007). Tympanostomy tubes and developmental outcomes at 9 to 11 years of age. New England Journal of Medicine, 356, 248261.Google Scholar
Petinou, K., Schwartz, R. G., Mody, M., & Gravel, J. S. (1999). The impact of otitis media with effusion on early phonetic inventories: A longitudinal prospective investigation. Clinical Linguistics and Phonetics, 13, 351367.Google Scholar
Rosenfeld, R. M., Shin, J. J., Schwartz, S. R., Coggins, R., Gagnon, L., Hackell, J. M., … Corrigan, M. D. (2016). Clinical practice guideline: Otitis media with effusion (update). Otolaryngology: Head and Neck Surgery, 154, S1S41.Google Scholar
Sacks, C., Shay, S., Repplinger, L., Leffel, K., Sappolich, S., Suskind, E., … Suskind, D. (2014). Pilot testing of a parent-directed intervention (Project ASPIRE) for underserved children who are deaf or hard of hearing. Child Language Teaching and Therapy, 30, 91102.CrossRefGoogle Scholar
Shield, B. M., & Dockrell, J. E. (2008). The effects of environmental and classroom noise on the academic attainments of primary school children. Journal of the Acoustical Society of America, 123, 133144.Google Scholar
Simpson, A., Enticott, J. C., & Douglas, J. (2017). Socioeconomic status as a factor in Indigenous and non-Indigenous children with hearing loss: Analysis of national survey data. Australian Journal of Primary Health, 23, 202207.Google Scholar
Sininger, Y. S., Doyle, K. J., & Moore, J. K. 1999. The case for early identification of hearing loss in children. Auditory system development, experimental auditory deprivation, and development of speech perception and hearing. Pediatric Clinics of North America, 46, 114.Google Scholar
Stoel-Gammon, C. (2011). Relationships between lexical and phonological development in young children. Journal of Child Language, 38, 134.Google Scholar
Teele, D. W., Klein, J. O., Chase, C., Menyuk, P., & Rosner, B. A. (1990). Otitis media in infancy and intellectual ability, school achievement, speech, and language at age 7 years. Greater Boston Otitis Media Study Group. Journal of Infectious Disease, 162(3), 685694.Google Scholar
Teele, D. W., Klein, J. O., & Rosner, B. A. (1984). Otitis media with effusion during the first three years of life and development of speech and language. Pediatrics, 74, 282287.Google Scholar
Tomblin, J. B., Harrison, M., Ambrose, S. E., Walker, E. A., Oleson, J. J., & Moeller, M. P. (2015). Language outcomes in young children with mild to severe hearing loss. Ear and Hearing, 36 (S1), 76S91S.Google Scholar
Tomblin, J. B., Oleson, J. J., Ambrose, S. E., Walker, E., & Moeller, M. P. (2014). The influence of hearing aids on the speech and language development of children with hearing loss. JAMA Otolaryngology: Head and Neck Surgery, 140, 403409.Google Scholar
VanDam, M., Ambrose, S. E., & Moeller, M. P. (2012). Quantity of parental language in the home environments of hard-of-hearing 2-year-olds. Journal of Deaf Studies and Deaf Education, 17, 402420.Google Scholar
Vohr, B. R., Topol, D., Watson, V., St Pierre, L., & Tucker, R. (2014). The importance of language in the home for school-age children with permanent hearing loss. Acta Paediatrica, 103, 6269.Google Scholar
Wake, M., Ching, T. Y., Wirth, K., Poulakis, Z., Mensah, F. K., Gold, L., … Rickards, F. (2016). Population outcomes of three approaches to detection of congenital hearing loss. Pediatrics, 137, 110.Google Scholar
Walker, E. A., McCreery, R. W., Spratford, M., Oleson, J. J., Van Buren, J., Bentler, R., … Moeller, M. P. (2015). Trends and predictors of longitudinal hearing aid use for children who are hard of hearing. Ear and Hearing, 36 (S1), 38S47S.Google Scholar
Walker, E. A., Spratford, M., Moeller, M. P., Oleson, J., Ou, H., Roush, P., & Jacobs, S. (2013). Predictors of hearing aid use time in children with mild-to-severe hearing loss. Language, Speech, and Hearing Services in Schools, 44, 7388.Google Scholar
Wallace, I. F., Gravel, J. S., McCarton, C. M., & Ruben, R. J. (1988). Otitis media and language development at 1 year of age. Journal of Speech and Hearing Disorders, 53, 245251.Google Scholar
Watkin, P., & Baldwin, M. (2011). Identifying deafness in early childhood: Requirements after the newborn hearing screen. Archives of Disease in Childhood, 96, 6266.Google Scholar
Watkin, P. M., & Baldwin, M. (1999). Confirmation of deafness in infancy. Archives of Disease in Childhood, 81, 380389.Google Scholar
Welling, D. R. (2010). Hearing and language development. In Shulman, B. B. & Capone, N. C. (Eds.), Language development: Foundations, processes, and clinical applications. Sudbury, MA: Jones and Bartlett.Google Scholar
Wessex Universal Neonatal Hearing Screening Trial Group. (1998). Controlled trial of universal neonatal screening for early identification of permanent childhood hearing impairment. Lancet, 352, 19571964.Google Scholar
Zimmerman, F. J., Gilkerson, J., Richards, J. A., Christakis, D. A., Xu, D., Gray, S., & Yapanel, U. (2009). Teaching by listening: The importance of adult–child conversations to language development. Pediatrics, 124, 342349.Google Scholar
Zumach, A., Gerrits, E., Chenault, M., & Anteunis, L. (2010). Long-term effects of early-life otitis media on language development. Journal of Speech, Language, and Hearing Research, 53, 3443.Google Scholar

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders, 5th ed. Arlington, VA: American Psychiatric Association.Google Scholar
Anderson, D. K., Lord, C., Risi, S., DiLavore, P. S., Shulman, C., Thurm, A., … Pickles, A. (2007). Patterns of growth in verbal abilities among children with autism spectrum disorder. Journal of Consulting and Clinical Psychology, 75(4), 594604.Google Scholar
Baird, G., Charman, T., Pickles, A., Chandler, S., Loucas, T., Meldrum, D., … Simonoff, E. (2008). Regression, developmental trajectory and associated problems in disorders in the autism spectrum: The SNAP study. Journal of Autism and Developmental Disorders, 38(10), 18271836. doi:10.1007/s10803-008-0571-9Google Scholar
Barger, B. D., Campbell, J. M., & McDonough, J. D. (2013). Prevalence and onset of regression within autism spectrum disorders: A meta-analytic review. Journal of Autism and Developmental Disorders, 43(4), 817828.Google Scholar
Beitchman, J. H., Brownlie, E. B., & Bao, L. (2014). Age 31 mental health outcomes of childhood language and speech disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 11021110.Google Scholar
Beitchman, J. H., Brownlie, E. B., Inglis, A., Wild, J., Ferguson, B., Schachter, D., … Matthews, R. (1996). Seven-year follow-up of speech/language impaired and control children: Psychiatric outcome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 37(8), 961970.Google Scholar
Beitchman, J. H., Hood, J., Rochon, J., & Peterson, M. (1989). Empirical classification of speech/language impairment in children II. Behavioral characteristics. Journal of the American Academy of Child and Adolescent Psychiatry, 28, 118123.Google Scholar
Beitchman, J. H., Hood, J., Rochon, J., Peterson, M., Mantini, T., & Majumdar, S. (1989). Empirical classification of speech/language impairment in children I. Identification of speech/language categories. Journal of the American Academy of Child and Adolescent Psychiatry, 28(1), 112117.Google Scholar
Beitchman, J. H., Nair, R., Clegg, M., Ferguson, B., & Patel, P. G. (1986). Prevalence of psychiatric disorders in children with speech and language disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 25(4), 528535.Google Scholar
Beitchman, J. H., Wilson, B., Johnson, C. J., Atkinson, L., Young, A., Adlaf, E., … Douglas, L. (2001). Fourteen-year follow-up of speech/language-impaired and control children: Psychiatric outcome. Journal of the American Academy of Child and Adolescent Psychiatry, 40(1), 7582.Google Scholar
Benasich, A. A., Curtiss, S., & Tallal, P. (1993). Language, learning, and behavioral disturbances in childhood: A longitudinal perspective. Journal of the American Academy of Child & Adolescent Psychiatry, 32(3), 585594.Google Scholar
Bennett, T. A., Szatmari, P., Bryson, S., Volden, J., Zwaigenbaum, L., Vaccarella, L., … Boyle, M. (2008). Differentiating autism and Asperger syndrome on the basis of language delay or impairment. Journal of Autism and Developmental Disorders, 38(4), 616625. doi:10.1007/s10803-007-0428-7Google Scholar
Berry, C. A., Shaywitz, S. E., & Shaywitz, B. A. (1985). Girls with attention deficit disorder: A silent minority? A report of behavioral and cognitive characteristics. Pediatrics, 76, 801809.Google Scholar
Bornstein, M. H., Hahn, C. S., Putnick, D. L., & Pearson, R. M. (2018). Stability of core language skill from infancy to adolescence in typical and atypical development. Science Advances, 4(11), eaat7422. doi:10.1126/sciadv.aat7422Google Scholar
Boucher, J. (2012). Research review: Structural language in autistic spectrum disorder – Characteristics and causes. Journal of Child Psychology and Psychiatry, 53(3), 219233.Google Scholar
Brassett-Harknett, A., & Butler, N. (2007). Attention-deficit/hyperactivity disorder: An overview of the etiology and a review of the literature relating to the correlates and lifecourse outcomes for men and women. Clinical Psychology Review, 27(2), 188210.Google Scholar
Brignell, A., May, T., Morgan, A. T., & Williams, K. (2018). Predictors and growth in receptive vocabulary from 4 to 8 years in children with and without autism spectrum disorder: A population-based study. Autism, 23(5), 13221334. doi:10.1177/1362361318801617Google Scholar
Brignell, A., Morgan, A. T., Woolfenden, S., Klopper, F., May, T., Sarkozy, V., & Williams, K. (2018). A systematic review and meta-analysis of the prognosis of language outcomes for individuals with autism spectrum disorder. Autism & Developmental Language Impairments, 3, 119. doi:10.1177/2396941518767610Google Scholar
Brignell, A., Williams, K., Jachno, K., Prior, M., Reilly, S., & Morgan, A. T. (2018). Patterns and predictors of language development from 4 to 7 years in verbal children with and without autism spectrum disorder. Journal of Autism and Developmental Disorders, 48(10), 32823295. doi:10.1007/s10803-018-3565-2Google Scholar
Brignell, A., Williams, K., Prior, M., Donath, S., Reilly, S., Bavin, E. L., … Morgan, A. T. (2016). Parent-reported patterns of loss and gain in communication in 1- to 2-year-old children are not unique to autism spectrum disorder. Autism, 21(3), 344356. doi:10.1177/1362361316644729Google Scholar
Bryan, K., Freer, J., & Furlong, C. (2007). Language and communication difficulties in juvenile offenders. International Journal of Language and Communication Disorders, 42, 505520.Google Scholar
Chan, A. S., Cheung, J., Leung, W. W. M., Cheung, R., & Cheung, M.-C. (2005). Verbal expression and comprehension deficits in young children with autism. Focus on Autism and Other Developmental Disabilities, 20(2), 117124. doi:10.1177/10883576050200020201Google Scholar
Charman, T., Drew, A., Baird, C., & Baird, G. (2003). Measuring early language development in preschool children with autism spectrum disorder using the MacArthur Communicative Development Inventory (Infant Form). Journal of Child Language, 30(1), 213236.Google Scholar
Chenausky, K., Brignell, A., Morgan, A., & Tager-Flusberg, H. (2019). Motor speech impairment predicts expressive language in minimally verbal, but not low verbal, individuals with autism spectrum disorder. Autism & Developmental Language Impairments, 4, 112. doi:10.1177/2396941519856333Google Scholar
Cherkasova, M., Sulla, E. M., Dalena, K. L., Pondé, M. P., & Hechtman, L. (2013). Developmental course of attention deficit hyperactivity disorder and its predictors. Journal of the Canadian Academy of Child and Adolescent Psychiatry, 22, 4754.Google Scholar
Cohen, N. J., Barwick, M. A., Horodezky, M. B., Vallance, D. D., & Im, N. (1998). Language, achievement, and cognitive processing in psychiatrically disturbed children with previously unidentified and unsuspected language impairments. Journal of Child Psychology & Psychiatry, 39(6), 865877.Google Scholar
Cohen, N. J., Davine, N., Horodezky, M. B., Lipsett, L., & Isaacson, L. (1993). Unsuspected language impairment in psychiatrically disturbed children: Prevalence and language and behavioral characteristics. Journal of the American Academy of Child and Adolescent Psychiatry, 32, 595603.Google Scholar
Cohen, N. J., Davine, M., & Meloche-Kelly, M. (1989). Prevalence of unsuspected language disorders in a child psychiatric population. Journal of the American Academy of Child and Adolescent Psychiatry, 28, 107111.Google Scholar
Cohen, N. J., Vallance, D. D., Barwick, M. A., Im, N., Menna, R., Horodezky, M. B., & Isaacson, L. (2000). The interface between ADHD and language impairment: An examination of language, achievement and cognitive processing. Journal of Child Psychology and Psychiatry, 41(3), 353362.Google Scholar
Conners, C. K. (1969). A teacher rating scale for use in drug studies with children. American Journal of Psychiatry, 126(6), 884888.Google Scholar
Conti-Ramsden, G., St Clair, M. C., Pickles, A., & Durkin, K. (2012). Developmental trajectories of verbal and nonverbal skills in individuals with a history of specific language impairment: From childhood to adolescence. Journal of Speech, Language, And Hearing Research, 55(6), 17161735. doi:10.1044/1092-4388(2012/10-0182)Google Scholar
Currie, J., & Stabile, M. (2006). Child mental health and human capital accumulation: The case of ADHD. Journal of Health Economics, 25(6), 10941118.Google Scholar
Cussen, A., Sciberras, E., Ukoumunne, O. C., & Efron, D. (2012). Relationship between symptoms of attention-deficit/hyperactivity disorder and family functioning: A community-based study. European Journal of Pediatrics, 171(2), 271280.Google Scholar
Dissanayake, C., Searles, J., Barbaro, J., Sadka, N., & Lawson, L. P. (2019). Cognitive and behavioral differences in toddlers with autism spectrum disorder from multiplex and simplex families. Autism Research, 12(4), 682693. doi:10.1002/aur.2074Google Scholar
Eadie, P., Morgan, A., Ukoumunne, O. C., Ttofari Eecen, K., Wake, M., & Reilly, S. (2015). Speech sound disorder at 4 years: Prevalence, comorbidities, and predictors in a community cohort of children. Developmental Medicine & Child Neurology, 57(6), 578584. doi:10.1111/dmcn.12635Google Scholar
Eigsti, I.-M., de Marchena, A. B., Schuh, J. M., & Kelley, E. (2011). Language acquisition in autism spectrum disorders: A developmental review. Research in Autism Spectrum Disorders, 5(2), 681691. doi:10.1016/j.rasd.2010.09.001Google Scholar
Faraone, S. V., & Biederman, J. (1996). Cognitive functioning, learning disability, and school failure in attention deficit hyperactivity: A family study perspective. In Beitchman, J. H., Cohen, N. J., Konstantareas, M. M., & Tannock, R. (Eds.), Language, learning, and behavior disorders: Developmental, biological, and clinical perspectives (pp. 247270). Cambridge: Cambridge University Press.Google Scholar
Gernsbacher, M. A., Morson, E. M., & Grace, E. J. (2016). Language and speech in Autism. Annual Review of Linguistics, 2, 413425. doi:10.1146/annurev-linguist-030514-124824Google Scholar
Girard, L.-C., Pingault, J.-B., Doyle, O., Falissard, B., & Tremblay, R. E. (2016). Developmental associations between conduct problems and expressive language in early childhood: A population-based study. Journal of Abnormal Child Psychology, 44(6), 10331043.CrossRefGoogle ScholarPubMed
Goh Kok Yew, S., & O’Kearney, R. (2013). Emotional and behavioural outcomes later in childhood and adolescence for children with specific language impairments: Meta-analyses of controlled prospective studies. Journal of Child Psychology and Psychiatry, 54, 516524.Google Scholar
Goh Kok Yew, S., & O’Kearney, R. (2015). Early language impairments and developmental pathways of emotional problems across childhood. International Journal of Language & Communication Disorders, 50(3), 358373.Google Scholar
Gualtieri, C., Koriath, U., van Bourgondien, M., & Saleeby, N. (1983). Language disorders in children referred for psychiatric services. Journal of the American Academy of Child Psychiatry, 22, 165171.Google Scholar
Harpin, V., Mazzone, L., Raynaud, J., Kahle, J., & Hodgkins, P. (2016). Long-term outcomes of ADHD: A systematic review of self-esteem and social function. Journal of Attention Disorders, 20(4), 295305.Google Scholar
Hudry, K., Leadbitter, K., Temple, K., Slonims, V., McConachie, H., Aldred, C., … Charman, T. (2010). Preschoolers with autism show greater impairment in receptive compared with expressive language abilities. International Journal of Language and Communication Disorders, 45(6), 681690. doi:10.3109/13682820903461493Google Scholar
Im-Bolter, N., & Cohen, N. J. (2007). Language impairment and psychiatric comorbidities. Pediatric Clinics of North America, 54(3), 525542. doi:10.1016/j.pcl.2007.02.008Google Scholar
Kessler, R. C., Adler, L., Ames, M., Barkley, R. A., Birnbaum, H., Greenberg, P., … Üstün, T. B. (2005). The prevalence and effects of adult attention deficit/hyperactivity disorder on work performance in a nationally representative sample of workers. Journal of Occupational and Environmental Medicine, 47(6), 565572.Google Scholar
Kibby, M. Y., Pavawalla, S. P., Fancher, J. B., Naillon, A. J., & Hynd, G. W. (2009). The relationship between cerebral hemisphere volume and receptive language functioning in dyslexia and attention-deficit hyperactivity disorder (ADHD). Journal of Child Neurology, 24, 438448.Google Scholar
Kjelgaard, M. M., & Tager-Flusberg, H. (2001). An investigation of language impairment in autism: Implications for genetic subgroups. Language and Cognitive Processes, 16(2–3), 287308.Google Scholar
Kjellmer, L., Fernell, E., Gillberg, C., & Norrelgen, F. (2018). Speech and language profiles in 4- to 6-year-old children with early diagnosis of autism spectrum disorder without intellectual disability. Neuropsychiatric Disease and Treatment, 14, 24152427. doi:10.2147/ndt.s171971Google Scholar
Kjellmer, L., Hedvall, A., Fernell, E., Gillberg, C., & Norrelgen, F. (2012). Language and communication skills in preschool children with autism spectrum disorders: Contribution of cognition, severity of autism symptoms, and adaptive functioning to the variability. Research in Developmental Disabilities, 33(1), 172180. doi:10.1016/j.ridd.2011.09.003Google Scholar
Kogan, M. D., Vladutiu, C. J., Schieve, L. A., Ghandour, R. M., Blumberg, S. J., Zablotsky, B., … Lu, M. C. (2018). The prevalence of parent-reported autism spectrum disorder among US children. Pediatrics, 142, e20174161.Google Scholar
Korrel, H., Mueller, K. L., Silk, T., Anderson, V., & Sciberras, E. (2017). Research review: Language problems in children with attention‐deficit hyperactivity disorder – A systematic meta‐analytic review. Journal of Child Psychology and Psychiatry, 58(6), 640654.Google Scholar
Kover, S., McDuffie, A., Hagerman, R., & Abbeduto, L. (2013). Receptive vocabulary in boys with autism spectrum disorder: Cross-sectional developmental trajectories. Journal of Autism and Developmental Disorders, 43(11), 26962709. doi:10.1007/s10803-013-1823-xGoogle Scholar
Kwok, E. Y. L., Brown, H. M., Smyth, R. E., & Oram Cardy, J. (2015). Meta-analysis of receptive and expressive language skills in autism spectrum disorder. Research in Autism Spectrum Disorders, 9, 202222. doi:10.1016/j.rasd.2014.10.008Google Scholar
Langberg, J. M., & Becker, S. P. (2012). Does long-term medication use improve the academic outcomes of youth with attention-deficit/hyperactivity disorder? Clinical Child and Family Psychology Review, 15, 215233.Google Scholar
Lawrence, D., Hafekost, J., Johnson, S. E., Saw, S., Buckingham, W. J., Sawyer, M. G., … Zubrick, S. R. (2016). Key findings from the second Australian child and adolescent survey of mental health and wellbeing. Australian & New Zealand Journal of Psychiatry, 50(9), 876886.Google Scholar
Levickis, P., Sciberras, E., McKean, C., Conway, L., Pezic, A., Mensah, F., … S., R. (2018). Association between social, emotional and behavioural well-being and child language problems from 4 to 7 years: A community based study. European Child & Adolescent Psychiatry, 27, 849859.Google Scholar
Levy, S. E., Giarelli, E., Lee, L.-C., Schieve, L. A., Kirby, R. S., Cunniff, C., … Rice, C. E. (2010). Autism spectrum disorder and co-occurring developmental, psychiatric, and medical conditions among children in multiple populations of the United States. Journal of Developmental and Behavioral Pediatrics, 31(4), 267275.Google Scholar
Lindsay, G., & Dockrell, J. E. (2012). Longitudinal patterns of behavioral, emotional, and social difficulties and self-concepts in adolescents with a history of specific language impairment. Language, Speech, and Hearing Services in Schools, 43(4), 445460.Google Scholar
Lord, C., Shulman, C., & DiLavore, P. (2004). Regression and word loss in autistic spectrum disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 45(5), 936955.Google Scholar
Love, A. J., & Thompson, M. G. (1988). Language disorders and attention deficit disorders in young children referred for psychiatric services: Analysis of prevalence and a conceptual synthesis. American Journal of Orthopsychiatry, 58(1), 5264.Google Scholar
Luyster, R., Kadlec, M. B., Carter, A., & Tager-Flusberg, H. (2008). Language assessment and development in toddlers with autism spectrum disorders. Journal of Autism and Developmental Disorders, 38(8), 14261438.Google Scholar
McCabe, P. C. (2005). Social and behavioral correlates of preschoolers with specific language impairment. Psychology in the Schools, 42(4), 373387.Google Scholar
McEvoy, R. E., Loveland, K. A., & Landry, S. H. (1988). The functions of immediate echolalia in autistic children: A developmental perspective. Journal of Autism and Developmental Disorders, 18(4), 657668.Google Scholar
Mlodnicka, A. E., O’Neill, S., Marks, D. J., Rajendran, K., Bedard, A. V., Schneiderman, R. L., … Halperin, J. M. (2016). Impact of occupational, physical and speech and language therapy in preschoolers with hyperactive/inattentive symptoms: A naturalistic 2-year follow-up study. Children’s Health Care, 45, 6783.Google Scholar
Mueller, K. L., & Tomblin, J. B. (2012). Examining the comorbidity of language disorders and ADHD. Topics in Language Disorders, 32(3), 228246.Google Scholar
Nelson, J. R., Benner, G. J., & Cheney, D. (2005). An investigation of the language skills of students with emotional disturbance served in public school settings. Journal of Special Education, 39(2), 97105.Google Scholar
Norbury, C. F., & Bishop, D. V. (2003). Narrative skills of children with communication impairments. International Journal of Language & Communication Disorders, 38(3), 287313. doi:10.1080/136820310000108133Google Scholar
Norrelgen, F., Fernell, E., Eriksson, M., Hedvall, Å., Persson, C., Sjölin, M., … Kjellmer, L. (2015). Children with autism spectrum disorders who do not develop phrase speech in the preschool years. Autism, 19(8), 934943.Google Scholar
O’Neill, S., Thornton, V., Marks, D. J., Rajendran, K., & Halperin, J. M. (2016). Early language mediates the relations between preschool inattention and school-age reading achievement. Neuropsychology, 30(4), 398404.Google Scholar
Overweg, J., Hartman, C. A., & Hendriks, P. (2018). Children with autism spectrum disorder show pronoun reversals in interpretation. Journal of Abnormal Psychology, 127(2), 228238. doi:10.1037/abn0000338Google Scholar
Ozonoff, S., Gangi, D., Hanzel, E. P., Hill, A., Hill, M. M., Miller, M., … Iosif, A. M. (2018). Onset patterns in autism: Variation across informants, methods, and timing. Autism Research, 11(5), 788797. doi:10.1002/aur.1943Google Scholar
Ozonoff, S., & Iosif, A. M. (2019). Changing conceptualizations of regression: What prospective studies reveal about the onset of autism spectrum disorder. Neuroscience & Biobehavioral Reviews, 100, 296304. doi:10.1016/j.neubiorev.2019.03.012Google Scholar
Ozonoff, S., Iosif, A.-M., Baguio, F., Cook, I. C., Hill, M. M., Hutman, T., … Sigman, M. (2010). A prospective study of the emergence of early behavioral signs of autism. Journal of the American Academy of Child and Adolescent Psychiatry, 49(3), 256266.Google Scholar
Park, C. J., Yelland, G. W., Taffe, J. R., & Gray, K. M. (2012). Morphological and syntactic skills in language samples of pre school aged children with autism: Atypical development? International Journal of Speech-Language Pathology, 14(2), 95108. doi:10.3109/17549507.2011.645555Google Scholar
Paul, R., Campbell, D., Gilbert, K., & Tsiouri, I. (2013). Comparing spoken language treatments for minimally verbal preschoolers with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(2), 418431. doi:10.1007/s10803-012-1583-zGoogle Scholar
Pickett, E., Pullara, O., O’Grady, J., & Gordon, B. (2009). Speech acquisition in older nonverbal individuals with autism: A review of features, methods, and prognosis. Cognitive and Behavioral Neurology, 22(1), 121. doi:10.1097/WNN.0b013e318190d185Google Scholar
Pickles, A., Anderson, D. K., & Lord, C. (2014). Heterogeneity and plasticity in the development of language: A 17-year follow-up of children referred early for possible autism. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55(12), 13541362. doi:10.1111/jcpp.12269Google Scholar
Prizant, B. M., & Rydell, P. J. (1984). Analysis of functions of delayed echolalia in autistic children. Journal of Speech, Language, and Hearing Research, 27(2), 183192.Google Scholar
Rapin, I., Dunn, M. A., Allen, D. A., Stevens, M. C., & Fein, D. (2009). Subtypes of language disorders in school-age children with autism. Developmental Neuropsychology, 34(1), 6684.Google Scholar
Reilly, S., Cook, F., Bavin, E. L., Bretherton, L., Cahir, P., Eadie, P., … Wake, M. (2017). Cohort profile: The Early Language in Victoria Study (ELVS). International Journal of Epidemiology, 47(1), 1120. doi:10.1093/ije/dyx079Google Scholar
Ripley, K., & Yuill, N. (2005). Patterns of language impairment and behaviour in boys excluded from school. British Journal of Educational Psychology, 75, 3750. doi:10.1348/000709905x27696Google Scholar
Roberts, J. (2014). Echolalia and language development in children with autism. In Arciuli, J. & Brock, J. (Eds.), Communication in autism (pp. 5573). Amsterdam: John Benjamins.Google Scholar
Rotheram-Fuller, E., & MacMullen, L. (2011). Cognitive‐behavioral therapy for children with autism spectrum disorders. Psychology in the Schools, 48, 263271.Google Scholar
Sawyer, M., Arney, F., Baghurst, P., Clark, J. J., Graetz, B. W., Kosky, R. J., … Zubrick, S. R. (2001). The mental health of young people in Australia: Key findings from the child and adolescent component of the national survey of mental health and well-being. Australian & New Zealand Journal of Psychiatry, 35, 806814.Google Scholar
Schoon, I., Parsons, S., & Law, J. (2010). Children’s language ability and psychosocial development: A 29-year follow-up study. Pediatrics, 126(1), e73e80.Google Scholar
Sciberras, E., Mueller, K. L., Efron, D., Bisset, M., Anderson, V., Schilpzand, E. J., … Nicholson, J. M. (2014). Language problems in children with ADHD: A community-based study. Pediatrics, 133(5), 793800.Google Scholar
Sciberras, E., Mulraney, M., Anderson, V., Rapee, R. M., Nicholson, J. M., Efron, D., … Hiscock, H. (2018). Managing anxiety in children with ADHD using cognitive-behavioural therapy: A pilot randomised controlled trial. Journal of Attention Disorders, 22, 515520.Google Scholar
Seung, H. K. (2007). Linguistic characteristics of individuals with high functioning autism and Asperger syndrome. Clinical Linguistics & Phonetics, 21(4), 247259. doi:10.1080/02699200701195081Google Scholar
Snowling, M. J., Bishop, D. V. M., Stothard, S. E., Chipchase, B., & Kaplan, C. (2006). Psychosocial outcomes at 15 years of children with a preschool history of speech‐language impairment. Journal of Child Psychology and Psychiatry, 47(8), 759765.Google Scholar
St Clair, M. C., Forrest, C. L., Yew, S. G., & Gibson, J. L. (2019). Early risk factors and emotional difficulties in children at risk of developmental language disorder: A population cohort study. Journal of Speech, Language, and Hearing Research, 62, 27502771.Google Scholar
St Clair, M. C., Pickles, A., Durkin, K., & Conti-Ramsden, G. (2011). A longitudinal study of behavioral, emotional and social difficulties in individuals with a history of specific language impairment (SLI). Journal of Communication Disorders, 44(2), 186199.Google Scholar
Staikova, E., Gomes, H., Tartter, V., McCabe, A., & Halperin, J. M. (2013). Pragmatic deficits and social impairment in children with ADHD. Journal of Child Psychology and Psychiatry, 54(12), 12751283.Google Scholar
Tager-Flusberg, H., & Kasari, C. (2013). Minimally verbal school-aged children with autism spectrum disorder: The neglected end of the spectrum. Autism Research, 6(6), 468478. doi:10.1002/aur.1329Google Scholar
Tager-Flusberg, H., Plesa Skwerer, D., Joseph, R. M., Brukilacchio, B., Decker, J., Eggleston, B., … Yoder, A. (2016). Conducting research with minimally verbal participants with autism spectrum disorder. Autism, 21(7), 852861. doi:10.1177/1362361316654605Google Scholar
Tannock, R., Ickowicz, A., Oram, J., & Fine, J. (1995). Language impairment and audiological status in ADHD: Preliminary results. Poster presentation at the Annual Child Psychiatry Day, The Hospital for Sick Children, Toronto, ON.Google Scholar
Tek, S., Mesite, L., Fein, D., & Naigles, L. (2013). Longitudinal analyses of expressive language development reveal two distinct language profiles among young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 44(1),7589. doi:10.1007/s10803-013-1853-4Google Scholar
Thurm, A., Manwaring, S. S., Luckenbaugh, D. A., Lord, C., & Swedo, S. E. (2014). Patterns of skill attainment and loss in young children with autism. Development and Psychopathology, 26(1), 203214.Google Scholar
Tirosh, E., & Cohen, N. J. (1998). Language deficit with attention-deficit disorder: A prevalent comorbidity. Journal of Child Neurology, 13(10), 493497.Google Scholar
Tomblin, J. B., Records, N. L., Buckwalter, P., Zhang, X., Smith, E., & O’Brien, M. (1997). Prevalence of specific language impairment in kindergarten children. Journal of Speech, Language and Hearing Research, 40, 12451260.Google Scholar
Trautman, R. C., Giddan, J. J., & Jurs, S. G. (1990). Language risk factor in emotionally disturbed children within a school and day treatment program. Journal of Childhood Communication Disorders, 13, 123133.Google Scholar
Yoder, P., & Stone, W. L. (2006). Randomized comparison of two communication interventions for preschoolers with autism spectrum disorders. Journal of Consulting and Clinical Psychology, 74(3), 426435.Google Scholar
Zwaigenbaum, L., Thurm, A., Stone, W., Baranek, G., Bryson, S., Iverson, J., … Landa, R. (2007). Studying the emergence of autism spectrum disorders in high-risk infants: Methodological and practical issues. Journal of Autism and Developmental Disorders, 37(3), 466480.Google Scholar

References

Adams, A. M., & Gathercole, S. E. (1995). Phonological working memory and speech production in preschool children. Journal of Speech and Hearing Research, 38, 403414.Google Scholar
Archibald, L. M. D., & Gathercole, S. E. (2007). Nonword repetition in specific language impairment: More than a phonological short-term memory deficit. Psychonomic Bulletin & Review, 14, 919924.Google Scholar
Astington, J. W., & Jenkins, J. M. (1999). A longitudinal study of the relation between language and theory-of-mind development. Developmental Psychology, 35, 13111320.Google Scholar
Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In Spence, K. W. (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 90197). New York, NY: Academic Press.Google Scholar
Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.Google Scholar
Baillargeon, R., & Carey, S. (2012). Core cognition and beyond: The acquisition of physical and numerical knowledge. In Pauen, S. (Ed.), Early childhood development and later outcome (pp. 3365). Cambridge: Cambridge University Press.Google Scholar
Baldwin, D. A. (1995). Understanding the link between joint attention and language. In Moore, C. & Dunham, P. J. (Eds.), Joint attention: Its origins and role in development (pp. 131158). Hillsdale, NJ: Erlbaum.Google Scholar
Bates, E. (1994). Modularity, domain specificity and the development of language. Discussions in neuroscience, 10, 136149.Google Scholar
Bivens, J. A., & Berk, L. E. (1990). A longitudinal study of the development of elementary school children’s private speech. Merrill-Palmer Quarterly, 36, 443463.Google Scholar
Bowerman, M., & Choi, S. (2001). Shaping meanings for language: Universal and language-specific in the acquisition of spatial semantic categories. In Bowerman, M. & Levinson, S. C. (Eds.), Language acquisition and conceptual development (pp. 475511). Cambridge, MA: Cambridge University Press.Google Scholar
Brown, A. L., & Palincsar, A. S. (1987). Reciprocal teaching of comprehension strategies: A natural history of one program for enhancing learning. In Day, J. D. & Borkowski, J. G. (Eds.), Intelligence and exceptionality: New directions for theory, assessment, and instructional practices (pp. 81132). Norwood, NJ: Ablex.Google Scholar
Brown, R. (1976). Reference in memorial tribute to Eric Lenneberg. Cognition, 4, 125153.Google Scholar
Chomsky, N. (1988). Language and problems of knowledge: The Managua lectures. Cambridge, MA: MIT Press.Google Scholar
Daneman, M., & Carpenter, P. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450466.Google Scholar
Daneman, M., & Green, I. (1986). Individual differences in comprehending and producing words in context. Journal of Memory and Language, 25, 118.Google Scholar
de Villiers, J. (2007). The interface of language and theory of mind. Lingua, 117, 18581878.Google Scholar
Dorn, K., Weinert, S., & Falck-Ytter, T. (2018). Watch and listen: A cross-cultural study of audio-visual-matching behavior in 4.5-month-old infants in German and Swedish talking faces. Infant Behavior and Development, 52, 121129.Google Scholar
Ebert, S. (2011). Was Kinder über die mentale Welt wissen – Die Entwicklung von deklarativem Metagedächtnis aus der Sicht der ‘Theory of Mind’. Hamburg: Dr. Kovač.Google Scholar
Ebert, S. (2015). Longitudinal relations between theory of mind and metacognition and the impact of language. Journal of Cognition and Development, 16, 559586.Google Scholar
Ebert, S., Lockl, K., Weinert, S., Anders, Y., Kluczniok, K., & Rossbach, H.-G. (2013). Internal and external influences on vocabulary development in preschool children. School Effectiveness and School Improvement: An International Journal of Research, Policy and Practice, 24, 138154.Google Scholar
Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48, 7199.Google Scholar
Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness: Connectionism in a developmental framework. Cambridge, MA: MIT Press.Google Scholar
Fodor, J. A. (1983). Modularity of mind: An essay on faculty psychology. Cambridge, MA: MIT Press.Google Scholar
Furth, H. G. (1966). Thinking without language: Psychological implications of deafness. New York: The Free Press.Google Scholar
Gathercole, S. E. (1995). Is nonword repetition a test of phonological memory or long-term knowledge? It all depends on the nonwords. Memory and Cognition, 23, 8394.Google Scholar
Gathercole, S. E., & Baddeley, A. D. (1990). Phonological memory deficits in language disordered children: Is there a causal connection? Journal of Memory and Language, 29, 336360.Google Scholar
Gathercole, S. E., & Baddeley, A. D. (1993). Working memory and language. Hillsdale, NJ: Erlbaum.Google Scholar
Gathercole, V. C. M., & Min, H. (1997). Word meaning biases or language-specific effects? Evidence from English, Spanish and Korean. First Language, 17, 3156.Google Scholar
Gathercole, S. E., Willis, C. S., Emslie, H., & Baddeley, A. D. (1992). Phonological memory and vocabulary development during early school years: A longitudinal study. Developmental Psychology, 28, 887898.Google Scholar
Gopnik, A., Choi, S., & Baumberger, T. (1996). Cross-linguistic differences in early semantic and cognitive development. Cognitive Development, 11, 197227.Google Scholar
Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. Cambridge, MA: MIT Press.Google Scholar
Grosse Wiesmann, C., Friederici, A. D., Singer, T., & Steinbeis, N. (2017). Implicit and explicit false belief development in preschool children. Developmental Science, 20, e12445.Google Scholar
Hitch, G. J., Halliday, M. S., Schaafstal, A. M., & Heffernan, T. M. (1991). Speech, ‘inner speech’, and the development of short-term memory: Effects of picture-labeling on recall. Journal of Experimental Child Psychology, 51, 220234.Google Scholar
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge, MA: MIT Press.Google Scholar
Karmiloff-Smith, A. (2015). An alternative to domain-general or domain-specific frameworks for theorizing about human evolution and ontogenesis. Neuroscience, 19, 91104.Google Scholar
Klein, W. (1986). Second language acquisition. Cambridge, MA: Cambridge University Press.Google Scholar
Landau, B., & Gleitman, L. R. (1985). Language and experience: Evidence from the blind child. Cambridge, MA: Harvard University Press.Google Scholar
Leonard, L. B. (1998). Language, speech, and communication. Children with specific language impairment. Cambridge, MA: MIT Press.Google Scholar
Leslie, A. M. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L. A. & Gelman, S. A. (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 119148). New York, NY: Cambridge University Press.Google Scholar
Lohmann, H., & Tomasello, M. (2003). The role of language in the development of false belief understanding: A training study. Child Development, 74, 11301144.Google Scholar
Markman, E. M. (1989). Categorization and naming in children. Problems of induction. Cambridge, MA: MIT Press.Google Scholar
Maurer, D., & Werker, J. F. (2014). Perceptual narrowing during infancy: A comparison of language and faces. Developmental Psychobiology, 56, 154178.Google Scholar
Morris, C. A., Lenhoff, H. M., & Wang, P. P. (Eds.). (2006). Williams-Beuren Syndrome. Research, evaluation, and treatment. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Neubauer, C. (2009). Funktionale Relevanz und Mikrogenese selbstbezogener Sprache im Vorschulalter. Berlin: Logos.Google Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14, 1128.Google Scholar
Nilsson, K. K., & de López, K. J. (2016). Theory of mind in children with specific language impairment: A systematic review and meta-analysis. Child Development, 87, 143153.Google Scholar
Oléron, P. (1977). Language and mental development. Hillsdale, NJ: Erlbaum.Google Scholar
Perner, J. (1991). Understanding the representational mind. Cambridge, MA: MIT Press.Google Scholar
Perner, J., Leekam, S. R., & Wimmer, H. (1987). Three-year-olds’ difficulty with false belief: The case for a conceptual deficit. British Journal of Developmental Psychology, 5, 125137.Google Scholar
Piaget, J. (1970). Piaget’s theory. In Mussen, P. H. (Ed.), Carmichael’s manual of child psychology, Vol. 1 (pp. 703732). New York, NY: Wiley.Google Scholar
Rivera-Flores, G. W. (2015). Self-instructional cognitive training to reduce impulsive cognitive style in children with attention deficit with hyperactivity disorder. Electronic Journal of Research in Educational Psychology, 13, 2746.Google Scholar
Rose, E., Lehrl, S., Ebert, S., & Weinert, S. (2018). Long-term relations between children’s language, the home literacy environment, and socioemotional development from ages 3 to 8. Early Education and Development, 29, 342356.Google Scholar
Rose, E., Weinert, S., & Ebert, S. (2018). The roles of receptive and productive language in children’s socioemotional development. Social Development, 27, 777792.Google Scholar
Saffran, J. R., Werker, J. F., & Werner, L. A. (2006). The infant’s auditory world: Hearing, speech, and the beginnings of language. In Damon, W. & Learner, R. M. (Eds.), Handbook of child psychology, Vol. 2 (pp. 58108). New York, NY: Wiley.Google Scholar
Schick, B., de Villiers, P., de Villiers, J., & Hoffmeister, R. (2007). Language and theory of mind: A study of deaf children. Child Development, 78, 376396.Google Scholar
Schneider, W. (2015). Memory development from early childhood through emerging adulthood. New York, NY: Springer.Google Scholar
Schuth, E., Köhne, J., & Weinert, S. (2017). The influence of academic vocabulary knowledge on school performance. Learning & Instruction, 49, 157165.Google Scholar
Slobin, D. I. (1985). The cross linguistic study of language acquisition, Vol. 1. The data; Vol. 2. Theoretical issues. Hillsdale, NJ: Erlbaum.Google Scholar
Smith, L. B. (2001). How domain-general processes may create domain-specific biases. In Bowerman, M. & Levinson, S. C. (Eds.), Language acquisition and conceptual development (pp. 4570). Cambridge, MA: Cambridge University Press.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 8996.Google Scholar
Tomasello, M. (2001). Perceiving intentions and learning words in the second year of life. In Tomasello, M. & Bates, E. (Eds.), Language development (pp. 111128). Malden, MA: Blackwell.Google Scholar
Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge, MA: Harvard University Press.Google Scholar
van der Lely, J. K. J., & Pinker, S. (2014). The biological basis of language: Insights from developmental grammatical impairments. Trends in Cognitive Science, 18, 586595.Google Scholar
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press.Google Scholar
Waxman, S. R., & Leddon, E. M. (2011). Early word-learning and conceptual development. In Goswami, U. (Ed.), The Wiley-Blackwell handbook of childhood cognitive development, 2nd ed. (pp. 180208). Hoboken, NJ: Wiley-Blackwell.Google Scholar
Weinert, F. E. (1996). Cognitive development: Individual differences. In DeCorte, E. & Weinert, F. E. (Eds.), The international encyclopedia of developmental and instructional psychology (pp. 268272). Oxford: Elsevier Science.Google Scholar
Weinert, S. (1992). Deficits in acquiring language structure: The importance of using prosodic cues. Applied Cognitive Psychology, 6, 545571.Google Scholar
Weinert, S. (2000). Sprach- und Gedächtnisprobleme dysphasisch-sprachgestörter Kinder: Sind rhythmisch-prosodische Defizite eine Ursache? In Müller, K. & Aschersleben, G. (Eds.), Rhythmus. Ein interdisziplinäres Handbuch (pp. 255283). Bern: Huber.Google Scholar
Weinert, S. (2003). Entwicklung von Sprache und Denken. In Schneider, W. & Knopf, M. (Eds.), Entwicklung, Lehren und Lernen (pp. 93108). Göttingen: Hogrefe.Google Scholar
Weinert, S. (2009). Implicit and explicit modes of learning: Similarities and differences from a developmental perspective. Linguistics, 47, 241271.Google Scholar
Weinert, S. (2010). Beziehungen zwischen Sprachentwicklung und Gedächtnisentwicklung. In Trolldenier, H.-P., Lenhard, W., & Marx, P. (Eds.), Brennpunkte der Gedächtnisforschung: Entwicklungs- und pädagogisch-psychologische Perspektiven (pp. 147170). Göttingen: Hogrefe.Google Scholar
Weinert, S., & Artelt, C. (2019). Measurement of skills and achievement – A critical assessment of theoretical and methodological concepts. In Becker, R. (Ed.), Research handbook on the sociology of education (pp. 106131). Cheltenham: Edward Elgar.Google Scholar
Weinert, S., Ebert, S., Lockl, K., & Kuger, S. (2012). Disparitäten im Wortschatzerwerb: Zum Einfluss des Arbeitsgedächtnisses und der Anregungsqualität in Kindergarten und Familie auf den Erwerb lexikalischen Wissens. Unterrichtswissenschaft, 40, 425.Google Scholar
Weismer, E. S., Evans, J., & Hesketh, L. (1999). An examination of verbal working memory capacity in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 42, 12491260.Google Scholar
Whorf, B. L. (1956). Language, thought, and reality. Cambridge, MA: MIT Press.Google Scholar
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103128.Google Scholar

References

American Speech-Language-Hearing Association. (2010). Schools Survey report: SLP caseload characteristics trends 1995–2010. www.asha.orgGoogle Scholar
Anaya, J. B., Peña, E. D., & Bedore, L. M. (2018). Conceptual scoring and classification accuracy of vocabulary testing in bilingual children. Language, Speech, and Hearing Services in Schools, 49(1), 8597. doi:10.1044/2017_LSHSS-16-0081Google Scholar
Au, T. K., Knightly, L. M., Jun, S.-A., & Oh, J. S. (2002). Overhearing a language during childhood. Psychological Science, 13(3), 238243. doi:10.1111/1467-9280.00444Google Scholar
Baron, A., Bedore, L. M., Peña, E. D., Lovgren, S., Lopez, A., & Villagran, E. (2018). Developmental patterns of Spanish grammar in Spanish-English bilingual children. American Journal of Speech-Language Pathology, 27(3), 975987.Google Scholar
Bedore, L. M., & Peña, E. D. (2008). Assessment of bilingual children for identification of language impairment: Current findings and implications for practice. International Journal of Bilingual Education and Bilingualism, 11(1) 129. doi:10.2167/beb392.0Google Scholar
Bedore, L. M., Peña, E. D., Anaya, J. B., Nieto, R., Lugo-Neris, M. J., & Baron, A. (2018). Understanding disorder within variation: Production of English grammatical forms by English language learners. Language, Speech, and Hearing Services in Schools, 49(2), 277291. doi:10.1044/2017_LSHSS-17-0027Google Scholar
Bedore, L. M., Peña, E. D., Griffin, Z. M., & Hixon, J. G. (2016). Effects of age of English exposure, current input/output, and grade on bilingual language performance. Journal of Child Language, 43(3), 687706. doi:10.1017/S0305000915000811Google Scholar
Bedore, L. M., Peña, E. D., Summers, C. L., Boerger, K., Greene, K., Resendiz, M., & Gillam, R. B. (2012). The measure matters: Language dominance profiles across measures in Spanish-English bilingual prekindergarten students. Bilingualism: Language and Cognition, 15(3), 616629.Google Scholar
Benmamoun, E., Montrul, S., & Polinsky, M. (2013). Heritage languages and their speakers: Opportunities and challenges for linguistics. Theoretical Linguistics, 39(3–4), 129181. doi:10.1515/tl-2013-0009Google Scholar
Bialystok, E. (2016). Bilingual education for young children: Review of the effects and consequences. International Journal of Bilingual Education and Bilingualism, 21(6), 114. doi:10.1080/13670050.2016.1203859Google Scholar
Bialystok, E., & Barac, R. (2012). Emerging bilingualism: Dissociating advantages for metalinguistic awareness and executive control. Cognition, 122(1), 6773. doi:10.1016/j.cognition.2011.08.003Google Scholar
Bialystok, E., & Viswanathan, M. (2009). Components of executive control with advantages for bilingual children in two cultures. Cognition, 112(3), 494500. doi:10.1016/j.cognition.2009.06.014Google Scholar
Birdsong, D. (2014). Dominance and age in bilingualism. Applied Linguistics, 35(4), 374392. doi:10.1093/applin/amu031Google Scholar
Blake, R. (1983). Mood selection among Spanish-speaking children, ages 4 to 12. Bilingual Review/La Revista Bilingüe, 10(1), 2132.Google Scholar
Bland-Stewart, L. M., & Fitzgerald, S. M. (2001). Use of Brown’s 14 grammatical morphemes by bilingual Hispanic preschoolers: A pilot study. Communication Disorders Quarterly, 22(4), 171186.Google Scholar
Block, N., & Vidaurre, L. (2019). Comparing attitudes of first-grade dual language immersion versus mainstream English students. Bilingual Research Journal, 42(2), 129149. doi:10.1080/15235882.2019.1604452Google Scholar
Blom, E., Boerma, T., Bosma, E., Cornips, L., & Everaert, E. (2017). Cognitive advantages of bilingual children in different sociolinguistic contexts. Frontiers in Psychology, 8, 552. doi:10.3389/fpsyg.2017.00552Google Scholar
Bowles, M. A., & Torres, J. (2022). Instructed heritage language acquisition. In Polinsky, M. & Montrul, S. (Eds.), The Cambridge handbook of heritage languages and linguistics (pp. 826850). Cambridge: Cambridge University Press.Google Scholar
Collins, B. A., O’Connor, E. E., Suárez-Orozco, C., Nieto-Castañon, A., & Toppelberg, C. O. (2014). Dual language profiles of Latino children of immigrants: Stability and change over the early school years. Applied Psycholinguistics, 35(3), 581620. doi:10.1017/S0142716412000513Google Scholar
Cuza, A. (2016). The status of interrogative subject–verb inversion in Spanish-English bilingual children. Lingua. International Review of General Linguistics. Revue internationale de linguistique generale, 180, 124138. doi:10.1016/j.lingua.2016.04.007Google Scholar
Cycyk, L. M., & Hammer, C. S. (2018). Beliefs, values, and practices of Mexican immigrant families towards language and learning in toddlerhood: Setting the foundation for early childhood education. Early Childhood Research Quarterly, 52, 2537. doi:10.1016/j.ecresq.2018.09.009Google Scholar
Davison, M. D., & Hammer, C. S. (2012). Development of 14 English grammatical morphemes in Spanish-English preschoolers. Clinical Linguistics & Phonetics, 26(8), 728742. doi:10.3109/02699206.2012.700679Google Scholar
De Houwer, A. (2005). Early bilingual acquisition separate development hypothesis. In Kroll, J. F. & de Groot, A. (Eds.), Handbook of bilingualism (pp. 3048). New York, NY: Oxford University Press.Google Scholar
De Houwer, A. (2007). Parental language input patterns and children’s bilingual use. Applied Psycholinguistics, 28(3), 411424.Google Scholar
De Quadros, R. M. Ü. (2018). Bimodal bilingual heritage signers: A balancing act of languages and modalities. Sign Language Studies, 18(3), 355384. doi:10.1353/sls.2018.0007Google Scholar
Drysdale, H., van der Meer, L., & Kagohara, D. (2015). Children with Autism Spectrum Disorder from bilingual families: A systematic review. Review Journal of Autism and Developmental Disorders, 2(1), 2638. doi:10.1007/s40489-014-0032-7Google Scholar
Durán, L. K., Hartzheim, D., Lund, E. M., Simonsmeier, V., & Kohlmeier, T. L. (2016). Bilingual and home language interventions with young dual language learners: A research synthesis. Language, Speech, and Hearing Services in Schools, 47(4), 347371. doi:10.1044/2016_LSHSS-15-0030Google Scholar
Eilers, R. E., Pearson, B. Z., & Cobo-Lewis, A. B. (2006). Social factors in bilingual development: The Miami experience. In McCardle, P. & Hoff, E. (Eds.), Childhood bilingualism: Research on infancy through school age (pp. 6890). Bristol: Multilingual Matters. doi:10.21832/9781853598715-006Google Scholar
Engel de Abreu, P. M. J., Cruz-Santos, A., & Puglisi, M. L. (2014). Specific language impairment in language-minority children from low-income families. International Journal of Language & Communication Disorders/Royal College of Speech & Language Therapists, 49(6), 736747. doi:10.1111/1460-6984.12107Google Scholar
Fishman, J. (2001) Can threatened languages be saved? Reversing language shift, revisited: A 21st century perspective. Clevedon: Multilingual Matters.Google Scholar
Fuller, J. M., & Torres, J. (2018). Spanish in the United States. In Seals, C. & Shah, S. (Eds.), Heritage language policies around the world. London: Routledge.Google Scholar
Gámez, P. B., & Levine, S. C. (2013). Oral language skills of Spanish-speaking English language learners: The impact of high-quality native language exposure. Applied Psycholinguistics, 34(4), 673696. doi:10.1017/S0142716411000919Google Scholar
Gessner, S., Herbert, T., & Parker, A. (2018) Indigenous languages in Canada. In Seals, C. & Shah, S. (Eds.), Heritage language policies around the world. London: Routledge.Google Scholar
Gollan, T. H., Starr, J., & Ferreira, V. S. (2015). More than use it or lose it: The number-of-speakers effect on heritage language proficiency. Psychonomic Bulletin & Review, 22(1), 147155. doi:10.3758/s13423-014-0649-7Google Scholar
Gray, S., Plante, E., Vance, R., & Henrichsen, M. (1999). The diagnostic accuracy of four vocabulary tests administered to preschool-age children. Language, Speech, and Hearing Services in Schools, 30(2), 196206. doi:10.1044/0161-1461.3002.196Google Scholar
Grosjean, F. (1989). Neurolinguists, beware! The bilingual is not two monolinguals in one. Brain and Language, 36, 315.Google Scholar
Grosjean, F. (2008). Studying bilinguals. Oxford: Oxford University Press.Google Scholar
Grosjean, F. (2010). Bilingual: Life and reality. Cambridge, MA: Harvard University Press.Google Scholar
Hakuta, K., Bialystok, E., & Wiley, E. (2003). Critical evidence: A test of the critical-period hypothesis for second-language acquisition. Psychological Science, 14(1), 3138. doi:10.1111/1467-9280.01415Google Scholar
Hoff, E. (2018). Bilingual development in children of immigrant families. Child Development Perspectives, 12(2), 8086. doi:10.1111/cdep.12262Google Scholar
Hoff, E., Core, C., Place, S., Rumiche, R., Señor, M., & Parra, M. (2012). Dual language exposure and early bilingual development. Journal of Child Language, 39(1), 127. doi:10.1017/S0305000910000759Google Scholar
Iluz-Cohen, P., & Armon-Lotem, S. (2013). Language proficiency and executive control in bilingual children. Bilingualism: Language and Cognition, 16(4), 884899.Google Scholar
Kan, R. T. Y., & Schmid, M. S. (2019). Development of tonal discrimination in young heritage speakers of Cantonese. Journal of Phonetics, 73, 4054. doi:10.1016/j.wocn.2018.12.004Google Scholar
Kapa, L. L., & Colombo, J. (2013). Attentional control in early and later bilingual children. Cognitive Development, 28(3), 233246. doi:10.1016/j.cogdev.2013.01.011Google Scholar
Leeman, J., & King, K. (2015). Heritage language education: Minority language speakers, second language instruction, and monolingual schooling. In Bigelow, M. & Ennser-Kananen, J. (Eds.), The Routledge handbook of educational linguistics, pp. 210223. New York, NY: Routledge.Google Scholar
Lindholm-Leary, K., & Block, N. (2010). Achievement in predominantly low SES/Hispanic dual language schools. International Journal of Bilingual Education and Bilingualism, 13(1), 4360. doi:10.1080/13670050902777546Google Scholar
Lindholm-Leary, K. J. (2001) Dual language education. Bristol: Multilingual Matters. doi:10.21832/9781853595332Google Scholar
McGregor, K. K., Oleson, J., Bahnsen, A., & Duff, D. (2013). Children with developmental language impairment have vocabulary deficits characterized by limited breadth and depth. International Journal of Language & Communication Disorders/Royal College of Speech & Language Therapists, 48(3), 307319. doi:10.1111/1460-6984.12008Google Scholar
Menken, K. (2013). Emergent bilingual students in secondary school: Along the academic language and literacy continuum. Language Teaching, 46(4), 438476. doi:10.1017/S0261444813000281Google Scholar
Montrul, S. A. (2008). Incomplete acquisition in bilingualism: Re-examining the age factor. Amsterdam: John Benjamins. doi: 10.1075/sibil.39Google Scholar
Montrul, S. (2016). The acquisition of heritage languages. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139030502Google Scholar
Nicholls, R. J., Eadie, P. A., & Reilly, S. (2011). Monolingual versus multilingual acquisition of English morphology: What can we expect at age 3? International Journal of Language & Communication Disorders/Royal College of Speech & Language Therapists, 46(4), 449463. doi:10.1111/j.1460-6984.2011.00006.xGoogle Scholar
Paradis, J., Nicoladis, E., Crago, M., & Genesee, F. (2011). Bilingual children’s acquisition of the past tense: A usage-based approach. Journal of Child Language, 38(3), 554578. doi:10.1017/S0305000910000218Google Scholar
Pearson, B. Z., & Fernández, S. C. (1994). Patterns of interaction in the lexical growth in two languages of bilingual infants and toddlers. Language Learning, 44(4), 617653.Google Scholar
Peña, E. D. (2016). Supporting the home language of bilingual children with developmental disabilities: From knowing to doing. Journal of Communication Disorders, 63, 8592. doi:10.1016/j.jcomdis.2016.08.001Google Scholar
Peña, E. D., Bedore, L. M., & Kester, E. S. (2016). Assessment of language impairment in bilingual children using semantic tasks: Two languages classify better than one. International Journal of Language & Communication Disorders/Royal College of Speech & Language Therapists, 51(2), 192202. doi:10.1111/1460-6984.12199Google Scholar
Peña, E. D., Bedore, L. M., & Lugo-Neris, M. J. (2016). Language intervention for school-age bilingual children: Principles and application. Treatment of Language Disorders in Children, 2nd ed. Baltimore, MD: Brookes Publishing.Google Scholar
Peña, E. D., Bedore, L. M., & Rappazzo, C. (2003). Comparison of Spanish, English, and bilingual children’s performance across semantic tasks. Language, Speech, and Hearing Services in Schools, 34(1), 516. doi:10.1044/0161-1461(2003/001)Google Scholar
Peña, E. D., Bedore, L. M., Shivabasappa, P., & Niu, L. (2018). Effects of divided input on bilingual children with language impairment. International Journal of Bilingualism, 24(1), 6278. doi:10.1177/1367006918768367Google Scholar
Peña, E. D., Bedore, L. M., & Zlatic-Giunta, R. (2002). Category-generation performance of bilingual children: The influence of condition, category, and language. Journal of Speech, Language, and Hearing Research, 45(5), 938947.Google Scholar
Peña, E. D., Gillam, R. B., Bedore, L. M., & Bohman, T. M. (2011). Risk for poor performance on a language screening measure for bilingual preschoolers and kindergarteners. American Journal of Speech-Language Pathology, 20(4), 302314. doi:10.1044/1058-0360(2011/10-0020)Google Scholar
Polinsky, M., & Scontras, G. (2019). Understanding heritage languages. Bilingualism: Language and Cognition, 23(1), 420. doi:10.1017/S1366728919000245Google Scholar
Przymus, S. D. (2016). Challenging the monolingual paradigm in secondary dual-language instruction: Reducing language-as-problem with the 2–1-L2 model. Bilingual Research Journal, 39(3–4), 279295. doi:10.1080/15235882.2016.1220995Google Scholar
Rothman, J., Tsimpli, I. M., & Pascual y Cabo, D. (2016). Formal linguistic approaches to heritage language acquisition: Bridges for pedagogically oriented research. In Pascual y Cabo, D. (Ed.), Advances in Spanish as a heritage language (pp. 1326). Amsterdam: John Benjamins. doi:10.1075/sibil.49.02rotGoogle Scholar
Schmid, M. S. (2011). Language attrition. Cambridge: Cambridge University Press.Google Scholar
Seals, C., & Shah, S. (2018). Heritage language policies around the world. London: Routledge.Google Scholar
Shin, D. (2018). Multimodal mediation and argumentative writing: A case study of a multilingual learner’s metalanguage awareness development. In Harman, R. (Ed.), Bilingual learners and social equity: Critical approaches to systemic functional linguistics (pp. 225242). Cham: Springer International. doi:10.1007/978-3-319-60953-9_11Google Scholar
Shivabasappa, P., Peña, E. D., & Bedore, L. M. (2019). Semantic category convergence in Spanish-English bilingual children with and without Developmental Language Disorder. Journal of Speech, Language, and Hearing Research, 62(7), 23612371. doi:10.1044/2019_JSLHR-L-17-0427Google Scholar
Silva-Corvalán, C. (2014). Bilingual language acquisition: Spanish and English in the first six years. Cambridge: Cambridge University Press. doi:10.1017/CBO9781139162531Google Scholar
Silva-Corvalán, C. (2016). Simultaneous bilingualism: Early developments, incomplete later outcomes? International Journal of Bilingualism, 22(5), 497512. doi:10.1177/1367006916652061Google Scholar
Tay, M. W. J. (1989). Code switching and code mixing as a communicative strategy in multilingual discourse. World Englishes, 8(3), 407417. doi:10.1111/j.1467-971X.1989.tb00678.xGoogle Scholar
The Annie E. Casey Foundation. (2019). Immigrant families and kids see economic gains – but disparities persist. KIDS COUNT. https://datacenter.kidscount.org/Google Scholar
Torres, J., Estremera, R., & Mohamed, S. (2019). The contribution of psychosocial and biographical variables to heritage language learners’ linguistic knowledge of Spanish. Studies in Second Language Acquisition, 41(4), 695719.Google Scholar
Tsimpli, I. M., Peristeri, E., & Andreou, M. (2016). Narrative production in monolingual and bilingual children with specific language impairment. Applied Psycholinguistics, 37(1), 195216.Google Scholar
US Census. (2015). Detailed languages spoken at home and ability to speak English for the population 5 years and over: 2009–2013. www.census.gov/data/tables/2013/demo/2009-2013-lang-tables.htmlGoogle Scholar
Velázquez, M. I. (2018). Household perspectives on minority language maintenance and loss: Language in the small spaces. Bristol: Multilingual Matters.Google Scholar
Wiley, T. G., & García, O. (2016). Language policy and planning in language education: Legacies, consequences, and possibilities. The Modern Language Journal, 100(S1), 4863. doi: 10.1111/modl.12303Google Scholar
Williams, C. J., & McLeod, S. (2012). Speech-language pathologists’ assessment and intervention practices with multilingual children. International Journal of Speech-Language Pathology, 14(3), 292305. doi:10.3109/17549507.2011.636071Google Scholar
Yu, B. (2013). Issues in bilingualism and heritage language maintenance: Perspectives of minority-language mothers of children with Autism Spectrum Disorders. American Journal of Speech-Language Pathology, 22(1), 1024.Google Scholar

References

Adamson, L. B., Kaiser, A. P., Tamis-LeMonda, C. S., Owen, M. T., & Dimitrova, N. (2019). The developmental landscape of early parent-focused language intervention. Early Childhood Research Quarterly, 50, 5967.Google Scholar
Antal, H., Hossain, M. J., Hassink, S., Henry, S., Fuzzell, L., Taylor, A., & Wysocki, T. (2015). Audio-video recording of health care encounters for pediatric chronic conditions: Observational reactivity and its correlates. Journal of Pediatric Psychology, 40(1), 144153.Google Scholar
Arney, F. M. (2004). A comparison of direct observation and self-report measures of parenting behaviour. Adelaide: University of Adelaide.Google Scholar
Aspland, H., & Gardner, F. (2003). Observational measures of parent–child interaction: An introductory review. Child and Adolescent Mental Health, 8(3), 136143.Google Scholar
Australian Bureau of Statistics. (2006). Socio‐economic indexes for areas. Canberra.Google Scholar
Baggett, K. M., Carta, J. J., & Horn, E.M. (2011). Indicator of parent child interaction manual. Kansas City, KS: Juniper Gardens Children’s Project.Google Scholar
Baixauli-Fortea, I., Casas, A. M., Berenguer-Forner, C., Colomer-Diago, C., & Roselló-Miranda, B. (2019). Pragmatic competence of children with autism spectrum disorder. Impact of theory of mind, verbal working memory, ADHD symptoms, and structural language. Applied Neuropsychology: Child, 8(2), 101112.Google Scholar
Barker, C., Pistrang, N., & Elliott, R. (2002). Research methods in clinical psychology: An introduction for students and practitioners. Chichester, MA: Wiley.Google Scholar
Bennetts, S., Mensah, F. K., Green, J., Hackworth, N. J., Westrupp, E., & Reilly, S. (2017a). Mothers’ experiences of parent-reported and video-recorded observational assessments. Journal of Child and Family Studies, 26(12), 33123326.Google Scholar
Bennetts, S. K., Mensah, F. K., Westrupp, E. M., Hackworth, N. J., Nicholson, J. M., & Reilly, S. (2017b). Establishing agreement between parent-reported and directly-measured behaviours. Australasian Journal of Early Childhood, 42(1), 105115.Google Scholar
Bennetts, S. K., Mensah, F., Westrupp, E., Hackworth, N. J., & Reilly, S. (2016). The agreement between parent-reported and directly measured child language and parenting behaviors. Frontiers in Psychology, 7, 1710.Google Scholar
Bishop, D. V. (2003). The children’s communication checklist, 2nd ed. London: The Psychological Corporation.Google Scholar
Bland, M., & Altman, D. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8, 135160.Google Scholar
Bornstein, M. H., Tamis-LeMonda, C. S., Tal, J., Ludemann, P., Toda, S., Rahn, C. W., … Vardi, D. (1992). Maternal responsiveness to infants in three societies: America, France, and Japan. Child Development, 63(4), 808821.Google Scholar
Bowling, A. (2005). Mode of questionnaire administration can have serious effects on data quality. Journal of Public Health, 27(3), 281291.Google Scholar
Bruner, J. (1975). The ontogenesis of speech acts. Journal of Child Language, 2, 119.Google Scholar
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81105.Google Scholar
Campbell, F. A., & Ramey, C. (1994). Effects of early intervention on intellectual and academic achievement: A follow-up study of children from low-income families. Child Development, 65(2), 684698.Google Scholar
Carey, G., Crammond, B., & De Leeuw, E. (2015). Towards health equity: A framework for the application of proportionate universalism. International Journal for Equity in Health, 14(1), 18.Google Scholar
Carta, J., Greenwood, C., Walker, D., & Buzhardt, J. (2010). Using IGDIs: Monitoring progress and improving intervention for infants and young children. Baltimore, MD: Brookes Publishing.Google Scholar
Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.Google Scholar
Conway, L., Levickis, P., Mensah, F., Smith, J. A., Wake, M., & Reilly, S. (2018a). The role of joint engagement in the development of language in a community-derived sample of slow-to-talk children. Journal of Child Language, 45, 12751293.Google Scholar
Conway, L. J., Levickis, P. A., Smith, J., Mensah, F., Wake, M., & Reilly, S. (2018b). Maternal communicative behaviours and interaction quality as predictors of language development: Findings from a community-based study of slow-to-talk toddlers. International Journal of Language and Communication Disorders, 53(2), 339354.Google Scholar
Daffern, T., Mackenzie, N. M., & Hemmings, B. (2017). Predictors of writing success: How important are spelling, grammar and punctuation? Australian Journal of Education, 61(1), 7587.Google Scholar
Davis, E. A. (1937). The development of linguistic skill in twins, singletons with siblings, and only children from age five to ten years. University of Minnesota Child Welfare Monograph Series, 14, 1–165.Google Scholar
Eshel, N., Daelmans, B., Cabral de Mello, M., & Martines, J. (2006). Responsive parenting: Interventions and outcomes. Bulletin of the World Health Organisation, 84(12), 991999.Google Scholar
Eyberg, S. M., Nelson, M. M., Ginn, N. C., Bhuiyan, N., & Boggs, S. R. (2013). Dyadic parent–child interaction coding system: Comprehensive manual for research and training, 4th ed. Gainesville, FL: PCIT International.Google Scholar
Friard, O., & Gamba, M. (2016). BORIS: A free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods in Ecology and Evolution, 7(11), 13251330.Google Scholar
Gardner, F. (1997). Observational methods for recording parent–child interaction: How generalisable are the findings? Child and Adolescent Mental Health, 2(2), 7074.Google Scholar
Gardner, F. (2000). Methodological issues in the direct observation of parent–child interaction: Do observational findings reflect the natural behavior of participants? Clinical Child and Family Psychology Review, 3, 185198.Google Scholar
Gartstein, M., & Marmion, J. (2008). Fear and positive affectivity in infancy: Convergence/discrepancy between parent-report and laboratory-based indicators. Infant Behavior & Development, 31, 227238.Google Scholar
Girolametto, L., Weitzman, E., Wiigs, M., & Steig-Pearce, P. (1999). The relationship between maternal language measures and language development in toddlers with expressive vocabulary delays. American Journal of Speech-Language Pathology, 8, 364374.Google Scholar
Goldfeld, S., Price, A., Bryson, H., Bruce, T., Mensah, F. K., Orsini, F., … Kemp, L. (2017). ‘right@home’: A randomised controlled trial of sustained nurse home visiting from pregnancy to child age 2 years, versus usual care, to improve parent care, parent responsivity and the home learning environment at 2 years. BMJ Open, 7(3), e013307.Google Scholar
Hackworth, N. J., Berthelsen, D., Matthews, J., Westrupp, E. M., Cann, W., & Ukoumunne, O. C., … Nicholson, J. M. (2017). Impact of a brief group intervention to enhance parenting and the home learning environment for children aged 6–36 months: A cluster randomised controlled trial. Prevention Science, 18(3), 337349.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Brookes Publishing.Google Scholar
Hart, B., & Risley, T. R. (1999). The social world of children: Learning to talk. Baltimore, MD: Brookes Publishing.Google Scholar
Hawes, D. J., & Dadds, M. R. (2006). Assessing parenting practices through parent-report and direct observation during parent-training. Journal of Child and Family Studies, 15(5), 554567.Google Scholar
Hayden, E. P., Durbin, C. E., Klein, D. N., & Olino, T. M. (2010). Maternal personality influences the relationship between maternal reports and laboratory measures of child temperament. Journal of Personality Assessment, 96(2), 586593.Google Scholar
Hirsh-Pasek, K., Adamson, L. B., Bakeman, R., Tresch Owen, M., & Michnick Golinkoff, R., Pace, A., … Suma, K. (2015). The contribution of early communication quality to low-income children’s language success. Psychological Science, 26(7), 10711083.Google Scholar
Huttenlocher, J., Vasilyeva, M., Cymerman, E., & Levine, S. (2002). Language input and child syntax. Cognitive Psychology, 45, 337374.Google Scholar
Johnson, S. M., & Bolstad, O. D. (1973). Methodological issues in naturalistic observation: Some problems and solutions from field research. In Hamerlynck, L. A., Handy, L. C., & Mash, E. J. (Eds.), Behavior change: Methodology, concepts and practice. The Fourth Banff International Conference on Behavioral Modifications (pp. 767). Champaign, IL: Research Press.Google Scholar
Kuijper, S. J. M, Hartman, C. A., Bogaerds-Hazenberg, S. T. M., & Hendriks, P. (2017). Narrative production in children with autism spectrum disorder (ASD) and children with attention-deficit/hyperactivity disorder (ADHD): Similarities and differences. Journal of Abnormal Psychology, 126(1), 6375.Google Scholar
Lasky, E. Z., & Klopp, K. (1982). Parent–child interactions in normal and language-disordered children. Journal of Speech and Hearing Disorders, 47(1), 718.Google Scholar
Law, J., & Roy, P. (2008). Parental report of infant language skills: A review of the development and application of the communicative development inventories. Child and Adolescent Mental Health, 13, 198206.Google Scholar
Levickis, P., McKean, C., Walls, E., & Law, J. (2019). Training community health nurses to measure parent–child interaction: A mixed-methods study. The European Journal of Public Health, 30(3), 445450.Google Scholar
Levickis, P., Reilly, S., Girolametto, L., Ukoumunne, O. C., & Wake, M. (2014). Maternal behaviours promoting language acquisition in slow-to-talk toddlers: Prospective community-based study. Journal of Developmental and Behavioural Pediatrics, 35(4), 274281.Google Scholar
Levickis, P., Sciberras, E., Conway, L., Pezic, A., Mensah, F., Bavin, E., … Reilly, S. (2018). Language and social-emotional and behavioural wellbeing from 4 to 7 years: A community-based study. European Child & Adolescent Psychiatry, 27, 849859.Google Scholar
MacDonald, J. D. (2004). Communicating partners: 30 years of building responsive relationships with late-talking children. London: Jessica Kingsley Publishers.Google Scholar
Magnuson, K. A., Sexton, H. R., Davis-Kean, P. E., & Huston, A. C. (2009). Increases in maternal education and young children’s language skills. Merrill-Palmer Quarterly, 55, 319350.Google Scholar
Matias, C. S. F. (2006). Direct observation of parent–child interaction based on attachment theory King’s College London. London: University of London.Google Scholar
McQueen, J., & Langsford, S. (2019). Scannable and online documents. www.savant.net.au/osd/scannable_and_online_documentsGoogle Scholar
Morrison, E. F., Rimm-Kauffman, S., & Pianta, R. C. (2003). A longitudinal study of mother–child interactions at school entry and social and academic outcomes in middle school. Journal of School Psychology, 41(3), 185200.Google Scholar
Namy, L. L., & Nolan, S. A. (2004). Characterizing changes in parent labelling and gesturing and their relation to early communicative development. Journal of Child Language, 31(4), 821835. www.nap.edu.au/naplanGoogle Scholar
Nation, I. S. P. (1995). Meaningful differences in the everyday experience of young American children. A brief critique of Hart, B. & Risley, T. Baltimore, MD: Brookes Publishing.Google Scholar
NICHD Early Child Care Research Network. (2002). Early child care and children’s development prior to school entry: Results from the NICHD Study of Early Child Care. American Educational Research Journal, 39(1), 133164.Google Scholar
Niec, L. N., Shanley, J. R., Barnett, M. L., Baker, S. E., & Solomon, D. T. (2015). Optimal or typical performance? The impact of instructional set on the behavioral assessment of parent–child interactions. Child & Family Behavior Therapy, 37(2), 105113.Google Scholar
Ninio, A., & Snow, C. E. (1996). Pragmatic development. Boulder, CO: Westview Press.Google Scholar
Noldus. (2008). The Observer XT 8.0.Google Scholar
Norbury, C. F. (2014). Atypical pragmatic development. In Matthews, D. (Ed.), Pragmatic development in first language acquisition. Amsterdam/Philadelphia: John Benjamins.Google Scholar
Olino, T., Durbin, E., Klein, D., Hayden, E., & Dyson, M. (2013). Gender differences in young children’s temperament traits: Comparisons across observational and parent-report methods. Journal of Personality Assessment, 81(2), 119129.Google Scholar
Pepper, J., & Weitzman, E. (2004). It takes two to talk: A practical guide for parents of children with language delays. Toronto: The Hanen Centre, Transcontinental Interglobe.Google Scholar
Pinker, S. (1994). The language instinct. London: Allen Lane.Google Scholar
Romeo, R. R., Leonard, J. A., Robinson, S. T., West, M. R., Mackey, A. P., & Rowe, M. L., & Gabrieli, J. D. E. (2018). Beyond the 30-million-word gap: Children’s conversational exposure is associated with language-related brain function. Psychological Science, 29(5), 700710.Google Scholar
Rowe, M. L. (2008). Child-directed speech: Relation to socioeconomic status, knowledge of child development and child vocabulary skill. Journal of Child Language, 35(1), 185205.Google Scholar
Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child-directed speech in vocabulary development. Child Development, 83, 17621774.Google Scholar
Roy, P., Chiat, S., & Dodd, B. (2014). Language and socioeconomic disadvantage: From research to practice. London: City University.Google Scholar
Roy, P., Kersley, H., & Law, J. (2005). The Sure Start Language Measure (SSLM). London: Sure Start.Google Scholar
Russell, A., Russell, G., & Midwinter, D. (1992). Observer influences on mothers and fathers: Self-reported influence during a home observation. Merrill-Palmer Quarterly, 38(2), 263283.Google Scholar
Sanders, M. R., Markie-Dadds, C., Tully, L. A., & Bor, W. (2000). The triple P-positive parenting program: A comparison of enhanced, standard, and self-directed behavioral family intervention for parents of children with early onset conduct problems. Journal of Consulting & Clinical Psychology, 68(4), 624640.Google Scholar
Skeat, J., Wake, M., Ukoumunne, O., Eadie, P., Bretherton, L., & Reilly, S. (2014). Who gets help for pre-school communication problems? Data from a prospective community study. Child: Care, Health and Development, 40, 215222.Google Scholar
Smith, J., Eadie, P., Levickis, P., Bretherton, L., & Goldfeld, S. (2018). Predictive validity of verbal and non-verbal communication and mother-child turn-taking at 12 months on language outcomes at 24 and 36 months in a cohort of infants experiencing adversity: A preliminary study. International Journal of Language and Communication Disorders, 53(5), 969980.Google Scholar
Snowling, M. J., Duff, F. J., Nash, H. M., & Hulme, C. (2015). Language profiles and literacy outcomes of children with resolving, emerging, or persisting language impairments. Journal of Child Psychology and Psychiatry, 57(12), 13601369.Google Scholar
Song, L., Spier, E. T., & Tamis-LeMonda, C. S. (2014). Reciprocal influences between maternal language and children’s language and cognitive development in low-income families. Journal of Child Language, 41(2), 305326.Google Scholar
StataCorp. (2015). Stata statistical software: Release 14. College Station, TX: StataCorp.Google Scholar
Stephens, G., & Matthews, D. (2014). The communicative infant from 0–18 months: The social-cognitive foundations of pragmatic development. In Matthews, D. (Ed.), Pragmatic development in first language acquisition. Amsterdam/Philadelphia: John Benjamins.Google Scholar
Sweet, M. A., & Appelbaum, M. I. (2004). Is home visiting an effective strategy? A meta-analytic review of home visiting programs for families with young children. Child Development, 75(5), 14351456.Google Scholar
Tamis-LeMonda, C. S., Bornstein, M. H., & Baumwell, L. (2001). Maternal responsiveness and children’s achievement of language milestones. Child Development, 72(3), 748767.Google Scholar
Taylor, N., Donovan, W., Miles, S., & Leavitt, L. (2009). Maternal control strategies, maternal language usage and children’s language usage at two years. Journal of Child Language, 36(2), 381404.Google Scholar
Thompson, E. R. (2007). Development and validation of an internationally reliable short-form of the positive and negative affect schedule (PANAS). Journal of Cross-Cultural Psychology, 38(2), 227242.Google Scholar
Thornberry, T. J. (2013). ‘Why don’t you act like this at home?!’ Parent and child reactivity during in-home Dyadic Parent–Child Interaction Coding System (DPICS) coded observations. Auburn, AL: Auburn University.Google Scholar
Tomasello, M., & Farrar, M. J. (1986). Joint attention and early language. Child Development, 57(6), 14541463.Google Scholar
Tomasello, M., & Todd, J. (1983). Joint attention and lexical acquisition style. First Language, 4(12), 197212.Google Scholar
Vygotsky, L. S. (1962). Thought and language. Cambridge, MA: MIT Press.Google Scholar
Wake, M., Tobin, S., Girolametto, L., Ukoumunne, O. C, Gold, L., & Levickis, P., … Reilly, S. (2011). Outcomes of population based language promotion for slow to talk toddlers at ages 2 and 3 years: Let’s Learn Language cluster randomised controlled trial. British Medical Journal, 343, d4741.Google Scholar
Wilson, S. R., Rack, J. J., Shi, X., & Norris, A. M. (2008). Comparing physically abusive, neglectful, and non-maltreating parents during interactions with their children: A meta-analysis of observational studies. Child Abuse & Neglect, 32(9), 897911.Google Scholar
Zaslow, M., Weinfield, N., Gallagher, M., Hair, E., Ogawa, J., & Egeland, B., … De Temple, J. M. (2006). Longitudinal prediction of child outcomes from differing measures of parenting in a low-income sample. Developmental Psychology, 42, 2737.Google Scholar
Zimmerman, I. L., Steiner, V. G., & Pond, R. E. (2002). The Preschool Language Scale: Examiner’s manual, 4th ed. San Antonio, TX: The Psychological Corporation.Google Scholar

References

Alati, R., Smith, G. D., Lewis, S. J., Sayal, K., Draper, E. S., Golding, J., … & Gray, R. (2013). Effect of prenatal alcohol exposure on childhood academic outcomes: Contrasting maternal and paternal associations in the ALSPAC study. PLoS ONE, 8(10), e74844.Google Scholar
Alderson-Day, B., & Fernyhough, C. (2015). Inner speech: Development, cognitive functions, phenomenology, and neurobiology. Psychological Bulletin, 141(5), 931965.Google Scholar
Asmussen, K., Law, J., Charlton, J., Acquah, D., Brims, L., Pote, I., & McBride, T (2018). Key competencies in early cognitive development: Things, people, numbers and words London: Early Intervention Foundation. Full Report. London: Early Intervention Foundation.Google Scholar
Astington, J. W., & Baird, J. A. (Eds.) (2005). Why language matters for theory of mind. Oxford: Oxford University Press.Google Scholar
Astington, J. W., & Hughes, C. (2013). Theory of mind: Self-reflection and social understanding. In Zelazo, P. D. (Ed.), The Oxford handbook of developmental psychology. Vol. 2. Self and other (pp. 398424). Oxford: Oxford University Press.Google Scholar
Atance, C. M., & Meltzoff, A. N. (2005). My future self: Young children’s ability to anticipate and explain future states. Cognitive Development, 20(3), 341361.Google Scholar
Bjorklund, D. F., Ellis, B. J., & Rosenberg, J. S. (2007). Evolved probabilistic cognitive mechanisms: An evolutionary approach to gene × environment × development interactions. In Kail, R. V. (Ed.), Advances in child development and behaviour (vol. 35, pp. 139). Oxford: Elsevier.Google Scholar
Baillargeon, R. (2008). Innate ideas revisited: For a principle of persistence in infants’ physical reasoning. Perspectives on Psychological Science, 3, 213.Google Scholar
Baillargeon, R., Spelke, E. S., & Wasserman, S. (1985). Object permanence in five-month-old infants. Cognition, 20(3), 191208.Google Scholar
Barner, D., Thalwitz, D., Wood, J., Yang, S. J., & Carey, S. (2007). On the relation between the acquisition of singular–plural morpho‐syntax and the conceptual distinction between one and more than one. Developmental Science, 10(3), 365373.Google Scholar
Barnes, J., & Melhuish, E. C. (2017). Amount and timing of group-based childcare from birth and cognitive development at 51 months: A UK study. International Journal of Behavioral Development, 41(3), 360370.Google Scholar
Bates, E., Carlson-Luden, V., & Bretherton, I. (1980). Perceptual aspects of tool using in infancy. Infant Behavior and Development, 3, 127140.Google Scholar
Belsky, J., & Most, R. K. (1981). From exploration to play: A cross-sectional study of infant free play behavior. Developmental Psychology, 17(5), 630639.Google Scholar
Bjorklund, D. F., & Causey, K. B. (2018). Children’s thinking: Cognitive development and individual differences. Los Angeles, CA: SAGE.Google Scholar
Bortfeld, H., Morgan, J. L., Golinkoff, R. M., & Rathbun, K. (2005). Mommy and me: Familiar names help launch babies into speech-stream segmentation. Psychological Science, 16(4), 298304.Google Scholar
Borge, T. C., Aase, H., Brantsæter, A. L., & Biele, G. (2017). The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: A systematic review and meta-analysis. BMJ Open, 7(9), e016777.Google Scholar
Bornstein, M. H. (2014). Human infancy … and the rest of the lifespan. Annual Review of Psychology, 65, 121158.Google Scholar
Bornstein, M. H., Hahn, C. S., & Suwalsky, J. T. (2013). Physically developed and exploratory young infants contribute to their own long-term academic achievement. Psychological Science, 24(10), 19061917.Google Scholar
Bornstein, M. H., Hahn, C. S., & Wolke, D. (2013). Systems and cascades in cognitive development and academic achievement. Child Development, 84(1), 154162.Google Scholar
Bradshaw, P. (2011) Growing up in Scotland: Changes in child cognitive ability in the pre-school years. Edinburgh: Scottish Government.Google Scholar
Bronfenbrenner, U., & Morris, P. A. (2006). The bioecological model of human development. In Lerner, R. M. (Ed.), Handbook of child psychology, vol. 1: Theoretical models of human development (pp. 793828). Hoboken, NJ: Wiley.Google Scholar
Brownell, C. A., Svetlova, M., Anderson, R., Nichols, S. R., & Drummond, J. (2013). Socialization of early prosocial behavior: Parents’ talk about emotions is associated with sharing and helping in toddlers. Infancy, 18(1), 91119.Google Scholar
Brugha, T. S, McManus, S., Bankart, J., Scott, F., Purdon, S., Smith, J., … Meltzer, H. (2011). Epidemiology of autism spectrum disorders in adults in the community in England. Archives of General Psychiatry, 68, 459465.Google Scholar
Bus, A. G., Van Ijzendoorn, M. H., & Pellegrini, A. D. (1995). Joint book reading makes for success in learning to read: A metaanalysis on intergenerational transmission of literacy. Review of Educational Research, 65(1), 121.Google Scholar
Camaioni, L., Perucchini, P., Bellagamba, F., & Colonnesi, C. (2004). The role of declarative pointing in developing a theory of mind. Infancy, 5(3), 291308.Google Scholar
Chu, F. W., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205212.Google Scholar
Cirino, P. T. (2011). The interrelationships of mathematical precursors in kindergarten. Journal of Experimental Child Psychology, 108(4), 713733.Google Scholar
Coates, D. L., & Lewis, M. (1984). Early mother–infant interaction and infant cognitive status as predictors of school performance and cognitive behavior in six-year-olds. Child Development, 55, 12191230.Google Scholar
Colledge, E., Bishop, D. V., Koeppen-Schomerus, G., Price, T. S., Happé, F. G., Eley, T. C., … & Plomin, R. (2002). The structure of language abilities at 4 years: A twin study. Developmental Psychology, 38(5), 749757.Google Scholar
Coubart, A., Izard, V., Spelke, E. S., Marie, J., & Streri, A. (2014). Dissociation between small and large numerosities in newborn infants. Developmental Science, 17(1), 1122.Google Scholar
Crystal, D. (1995). The Cambridge encyclopedia of the English language. London: BCA.Google Scholar
Cutting, A. L., & Dunn, J. (2002). The cost of understanding other people: Social cognition predicts young children’s sensitivity to criticism. Journal of Child Psychology and Psychiatry, 43, 849860.Google Scholar
Devine, R. T., & Hughes, C. (2014). Relations between false belief understanding and executive function in early childhood: A meta‐analysis. Child Development, 85(5), 17771794.Google Scholar
Davis, E. P., Buss, C., Muftuler, T., Head, K., Hasso, A., Wing, D., … & Sandman, C. A. (2011). Children’s brain development benefits from longer gestation. Frontiers in Psychology, 2, 1.Google Scholar
de Villiers, J. G., & de Villiers, P. A. (2014). The role of language in theory of mind development. Topics in Language Disorders, 34(4), 313328.Google Scholar
de Vries, R. (2014). Earning by degrees: Differences in the career outcomes of UK graduates. The Sutton Trust. www.suttontrust.com/wp-content/uploads/2014/12/Earnings-by-Degrees-REPORT.pdfGoogle Scholar
Downey, D. B., Condron, D. J., & Yucel, D. (2015). Number of siblings and social skills revisited among American fifth graders. Journal of Family Issues, 36(2), 273296.Google Scholar
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A., Klebanov, , … Japanel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 14281446.Google Scholar
Duncan, G. J., & Murnane, R. J. (Eds.). (2011). Whither opportunity? Rising inequality, schools, and children’s life chances. New York, NY: Russell Sage Foundation.Google Scholar
Dunn, J., Brown, J., & Beardsall, L. (1991). Family talk about feeling states and children’s later understanding of others’ emotions. Developmental Psychology, 27(3), 448.Google Scholar
Eisenberg, N., & Fabes, R. A. (1998). Prosocial development. In Damon, W. & Eisenberg, N. (Eds.), Handbook of child psychology: vol. 3. Social, emotional, and personality development, 5th ed. (pp. 701778). New York, NY: Wiley.Google Scholar
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307314.Google Scholar
Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., Pethick, S. J., … & Stiles, J. (1994). Variability in early communicative development. Washington, DC: Society for Research in Child Development.Google Scholar
Fernald, A. (1995). Human maternal vocalizations to infants as biologically relevant signals: An evolutionary perspective. In Barkow, J. H., Cosmides, L., & Toby, J. (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 391428). New York, NY: Oxford University Press.Google Scholar
Friso-van den Bos, I., van der Ven, S. H., Kroesbergen, E. H., & van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 2944.Google Scholar
Garcia, E., & Weiss, E. (2017). Education inequalities at the school starting gate: Gaps, trends and strategies to address them. Washington, DC: The Economic Policy Institute.Google Scholar
Geary, D., Hoard, M,, Byrd-Craven, J., & DeSoto, M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121151.Google Scholar
Gelman, S. A. (2003). The essential child: Origins of essentialism in everyday thought. Oxford: Oxford University Press.Google Scholar
Gentner, D., & Hoyos, C. (2017). Analogy and abstraction. Topics in Cognitive Science, 9(3), 672693.Google Scholar
George, A., Stokes, L., & Wilkinson, D. (2012). Does early education influence key stage 1 attainment? Evidence for England from the Millennium Cohort Study. National Institute Economic Review, 222(1), R67R80.Google Scholar
Georgieff, M. K. (2007). Nutrition and the developing brain: Nutrient priorities and measurement. The American Journal of Clinical Nutrition, 85(2), 614S620S.Google Scholar
Glover, V. (2015). Prenatal stress and its effects on the fetus and the child: possible underlying biological mechanisms. In Antonelli, M. C. (Ed.), Perinatal programming of neurodevelopment (pp. 269283). New York, NY: Springer.Google Scholar
Goisis, A. (2015). How are children of older mothers doing? Evidence from the United Kingdom. Biodemography and Social Biology, 61(3), 231251.Google Scholar
Golinkoff, R. M., Hoff, E., Rowe, M. L., Tamis‐LeMonda, C. S., & Hirsh‐Pasek, K. (2019). Language matters: Denying the existence of the 30‐million‐word gap has serious consequences. Child Development, 90(3), 985992.Google Scholar
Gopnik, A., Meltzoff, A. N., & Bryant, P. (1997). Words, thoughts, and theories (vol. 1). Cambridge, MA: MIT Press.Google Scholar
Greening, J. (2017). Unlocking talent, fulfilling potential: A plan for improving social mobility through education. London: UK Department for Education. www.gov.uk/government/publications/improving-social-mobility-through-educationGoogle Scholar
Gunderson, E. A., & Levine, S. C. (2011). Some types of parent number-talk count more than others: Relations between parents’ input and children’s cardinal‐number knowledge. Developmental Science, 14(5), 10211032.Google Scholar
Haith, M. M. (1966). The response of the human newborn to visual movement. Journal of Experimental Child Psychology, 3(3), 235243.Google Scholar
Hansen, K., & Jones, E. M. (2010). Age 5 cognitive development in England. Child Indicators Research, 3(1), 105126.Google Scholar
Hart, B., & Risley, T. R. (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: Paul H. Brookes Publishing.Google Scholar
Heckman, J. J., & Karapakula, G. (2019). Intergenerational and intragenerational externalities of the Perry Preschool Project (working paper 25889). Cambridge, MA: National Bureau of Economic Research.Google Scholar
Hoff, E. (2003). The specificity of environmental influence: Socioeconomic status affects early vocabulary development via maternal speech. Child Development, 74(5), 13681378.Google Scholar
Hoff, E. (2013a). Interpreting the early language trajectories of children from low-SES and language minority homes: Implications for closing achievement gaps. Developmental Psychology, 49(1), 4.Google Scholar
Hoff, E. (2013b). Language development. Belmont, CA: Cengage LearningGoogle Scholar
Horta, B. L., Loret de Mola, C., & Victora, C. G. (2015). Breastfeeding and intelligence: A systematic review and meta‐analysis. Acta Paediatrica, 104(S467), 1419.Google Scholar
Hughes, C., Ensor, R., & Marks, A. (2011). Individual differences in false belief understanding are stable from 3 to 6 years of age and predict children’s mental-state talk with school friends. Journal of Experimental Child Psychology, 108(1), 96112.Google Scholar
Huntsinger, C. S., Jose, P. E., & Luo, Z. (2016). Parental facilitation of early mathematics and reading skills and knowledge through encouragement of home-based activities. Early Childhood Research Quarterly, 37, 115.Google Scholar
Institut de la statistique du Québec. (2002). Québec Longitudinal Study of Child Development (QLSCD 1998–2002). Cognitive development in children aged 17 to 29 months. Quebec: Institut de la statistique du Québec.Google Scholar
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 1038210385.Google Scholar
Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development?. Developmental Cognitive Neuroscience, 1(1), 721.Google Scholar
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns’ preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1), 119.Google Scholar
Jordan, N. C., Kaplan, D., Olah, L. N., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77(1), 153175.Google Scholar
Karmiloff-Smith, A. (2006). The tortuous route from genes to behavior: A neuroconstructivist approach. Cognitive, Affective, & Behavioral Neuroscience, 6(1), 917.Google Scholar
Kiernan, K. E., & Huerta, M. C. (2008). Economic deprivation, maternal depression, parenting and children’s cognitive and emotional development in early childhood. The British Journal of Sociology, 59(4), 783806.Google Scholar
Kiernan, K. E., & Mensah, F. K. (2009). Poverty, maternal depression, family status and children’s cognitive and behavioural development in early childhood: A longitudinal study. Journal of Social Policy, 38(4), 569588.Google Scholar
Lacroix, V., Pomerleau, A., & Malcuit, G. (2002). Properties of adult and adolescent mothers’ speech, children’s verbal performance and cognitive development in different socioeconomic groups: A longitudinal study. First Language, 22(2), 173196.Google Scholar
Law, J., Charlton, J., & Asmussen, K. (2017). Language as a child wellbeing indicator. London: Early Intervention Foundation. www.eif.org.uk/report/language-as-a-child-wellbeing-indicatorGoogle Scholar
Lee, K. (2013). Little liars: Development of verbal deception in children. Child Development Perspectives, 7(2), 9196.Google Scholar
LeFevre, J. A., Fast, L., Skwarchuk, S. L., Smith‐Chant, B. L., Bisanz, J., Kamawar, D., & Penner‐Wilger, M. (2010). Pathways to mathematics: Longitudinal predictors of performance. Child Development, 81(6), 17531767.Google Scholar
LeFevre, J. A., Skwarchuk, S. L., Smith-Chant, B. L., Fast, L., Kamawar, D., & Bisanz, J. (2009). Home numeracy experiences and children’s math performance in the early school years. Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement, 41(2), 5566.Google Scholar
Leslie, A. M., & Kaldy, Z. (2001). Indexing individual objects in infant working memory. Journal of Experimental Child Psychology, 78(1), 6174.Google Scholar
Levine, S. C., Suriyakham, L. W., Rowe, M. L., Huttenlocher, J., & Gunderson, E. A. (2010). What counts in the development of young children’s number knowledge? Developmental Psychology, 46(5), 1309.Google Scholar
Luijuk, M. P. C. M., Linting, M. Henrichs, J., & van Ijzendoorn, M. H. (2015). Hours in non-parental childcare are related to language development in a longitudinal cohort study: Childcare and language development. Childcare Health and Development, 41(6), 11881198.Google Scholar
Magnuson, K. A., Meyers, M. K., Ruhm, C. J., & Waldfogel, J. (2004). Inequality in preschool education and school readiness. American Educational Research Journal, 41(1), 115157.Google Scholar
Magnuson, K. A., Sexton, H. R., Davis-Kean, P. E., & Huston, A. C. (2009). Increases in maternal education and young children’s language skills. Merrill-Palmer Quarterly, 55(3), 319350.Google Scholar
Melhuish, E. C. (2011). Preschool matters. Science, 333(6040), 299300.Google Scholar
Mamluk, L., Edwards, H. B., Savović, J., Leach, V., Jones, T., Moore, T. H., … & Smith, G. D. (2017). Low alcohol consumption and pregnancy and childhood outcomes: Time to change guidelines indicating apparently ‘safe’ levels of alcohol during pregnancy? A systematic review and meta-analyses. BMJ Open, 7(7), e015410.Google Scholar
Marulis, L. M., & Neuman, S. B. (2010). The effects of vocabulary intervention on young children’s word learning: A meta-analysis. Review of Educational Research, 80(3), 300335.Google Scholar
Masten, A. S., & Cicchetti, D. (2010). Developmental cascades. Development and Psychopathology, 22(3), 491495.Google Scholar
National Research Council. (2015). Transforming the workforce for children birth through age 8: A unifying foundation. Washington, DC: National Academies Press.Google Scholar
McKean, C., Reilly, S., Bavin, E., Bretherton, L., Cini, E., Conway, L., … & Mensah, F. (2017). Language outcomes at 7 years: Early predictors and co-occurring difficulties. Pediatrics, 139(3), e20161684.Google Scholar
Meins, E., Fernyhough, C., Wainwright, R., Clark‐Carter, D., Das Gupta, M., Fradley, E., & Tuckey, M. (2003). Pathways to understanding mind: Construct validity and predictive validity of maternal mind‐mindedness. Child Development, 74(4), 11941211.Google Scholar
Meins, E., Fernyhough, C., Wainwright, R., Das Gupta, M., Fradley, E., & Tuckey, M. (2002). Maternal mind-mindedness and attachment security as predictors of theory of mind understanding. Child Development, 73(6), 17151726.Google Scholar
Melhuish, E. (2010) Growing up in Scotland: Impact of the home learning environment on child cognitive development. Edinburgh: Scottish GovernmentGoogle Scholar
Meltzoff, A. N. (2007). The ‘like me’ framework for recognizing and becoming an intentional agent. Acta Psychologica, 124(1), 2643.Google Scholar
Mix, K. S. (2009). How Spencer made number: First uses of the number words. Journal of Experimental Child Psychology, 102(4), 427444.Google Scholar
Mol, S. E., Bus, A. G., De Jong, M. T., & Smeets, D. J. (2008). Added value of dialogic parent–child book readings: A meta-analysis. Early Education and Development, 19(1), 726.Google Scholar
Moore, J. K., & Linthicum, F. H. Jr. (2007). The human auditory system: A timeline of development. International Journal of Audiology, 46(9), 460478.Google Scholar
Morales, M., Mundy, P., Delgado, C. E., Yale, M., Messinger, D., Neal, R., & Schwartz, H. K. (2000). Responding to joint attention across the 6- through 24-month age period and early language acquisition. Journal of Applied Developmental Psychology, 21(3), 283298.Google Scholar
Morris, S. P., Melhuish, E., & Gardiner, J. (2017). Study of early education and development (SEED): Impact study on early education use and child outcomes up to age three. London: UK Department for Education.Google Scholar
Mundy, P., Block, J., Delgado, C., Pomares, Y., Van Hecke, A. V., & Parlade, M. V. (2007). Individual differences and the development of joint attention in infancy. Child Development, 78(3), 938954.Google Scholar
National Institute of Child Health and Human Development Early Childcare Research Network. (2003). Social functioning in first grade: Associations with earlier home and childcare predictors and with current classroom experiences. Child Development, 74, 16391662.Google Scholar
Nelson, K. (1973). Structure and strategy in learning to talk. Chicago, IL: Society for Research in Child Development.Google Scholar
Newton, E. K., Thompson, R. A., & Goodman, M. (2016). Individual differences in toddlers’ prosociality: Experiences in early relationships explain variability in prosocial behavior. Child Development, 87(6), 17151726.Google Scholar
Nguyen, T., Watts, T. W., Duncan, G. J., Clements, D. H., Sarama, J. S., Wolfe, C., & Spitler, M. E. (2016). Which preschool mathematics competencies are most predictive of fifth grade achievement? Early Childhood Research Quarterly, 36, 550560.Google Scholar
Nilsson, K. K., & de López, K. J. (2016). Theory of mind in children with specific language impairment: A systematic review and meta‐analysis. Child Development, 87(1), 143153.Google Scholar
Oxford, M., & Spieker, S. (2006). Preschool language development among children of adolescent mothers. Journal of Applied Developmental Psychology, 27(2), 165182.Google Scholar
Pauen, S., & Bechtel-Kuehne, S. (2016). How toddlers acquire and transfer tool knowledge: Developmental changes and the role of executive functions. Child Development, 87, 12331249.Google Scholar
Pears, K. C., & Moses, L. J. (2003). Demographics, parenting, and theory of mind in preschool children. Social Development, 12(1), 120.Google Scholar
Pellegrini, A. (2013). Play. In Masten, A. S. & Zelazo, P. D. (Eds.), The Oxford handbook of developmental psychology, vol. 2: Self and other (pp. 276299). Oxford: Oxford University Press.Google Scholar
Pelli, D. G., & Tillman, K. A. (2008). The uncrowded window of object recognition. Nature Neuroscience, 11(10), 11291135.Google Scholar
Perner, J., Ruffman, T., & Leekam, S. R. (1994). Theory of mind is contagious: You catch it from your sibs. Child Development, 65(4), 12281238.Google Scholar
Perszyk, D. R., & Waxman, S. R. (2018). Linking language and cognition in infancy. Annual Review of Psychology, 69, 239250.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderhiser, J. M. (2013). Behavioral genetics (6th ed.). New York, NY: Worth.Google Scholar
Prior, M. Bavin, E., and Ong, B. (2011). Predictors of school readiness in five‐ to six‐year‐old children from an Australian longitudinal community sample. Educational Psychology, 31, 316.Google Scholar
Puma, M., Bell, S., Cook, R., Heid, C., Shapiro, G., Broene, P., … & Ciarico, J. (2010). Head Start impact study. Final report. Washington, DC: Administration for Children & Families.Google Scholar
Purpura, D. J., & Reid, E. E. (2016). Mathematics and language: Individual and group differences in mathematical language skills in young children. Early Childhood Research Quarterly, 36, 259268.Google Scholar
Purpura, D. J., Schmitt, S. A., & Ganley, C. M. (2017). Foundations of mathematics and literacy: The role of executive functioning components. Journal of Experimental Child Psychology, 153, 1534.Google Scholar
Quigley, M. A., Hockley, C., Carson, C., Kelly, Y., Renfrew, M. J., & Sacker, A. (2012). Breastfeeding is associated with improved child cognitive development: A population-based cohort study. The Journal of Pediatrics, 160(1), 2532.Google Scholar
Quinn, P. C. (2011). Born to categorize. In. Goswami, U. (Ed.), The Wiley-Black handbook of cognitive development, 2nd ed. (pp. 129152), Chichester: Wiley-Blackwell.Google Scholar
Raikes, H., Alexander Pan, B., Luze, G., Tamis‐LeMonda, C. S., Brooks‐Gunn, J., Constantine, J., … & Rodriguez, E. T. (2006). Mother–child bookreading in low‐income families: Correlates and outcomes during the first three years of life. Child Development, 77(4), 924953.Google Scholar
Ramírez‐Esparza, N., García‐Sierra, A., & Kuhl, P. K. (2014). Look who’s talking: Speech style and social context in language input to infants are linked to concurrent and future speech development. Developmental Science, 17(6), 880891.Google Scholar
Reznick, J. S., & Goldfield, B. A. (1992). Rapid change in lexical development in comprehension and production. Developmental Psychology, 28(3), 406413.Google Scholar
Rittle‐Johnson, B., Fyfe, E. R., Hofer, K. G., & Farran, D. C. (2017). Early math trajectories: Low‐income children’s mathematics knowledge from ages 4 to 11. Child Development, 88(5), 17271742.Google Scholar
Rodriguez, E. T., & Tamis-LeMonda, C. S. (2011). Trajectories of the home learning environment across the first 5 years: Associations with children’s vocabulary and literacy skills at prekindergarten. Child Development, 82, 10581075.Google Scholar
Rowe, M. L. (2012). A longitudinal investigation of the role of quantity and quality of child‐directed speech in vocabulary development. Child Development, 83(5), 17621774.Google Scholar
Ruddy, M. G., & Bornstein, M. H. (1982). Cognitive correlates of infant attention and maternal stimulation over the first year of life. Child Development, 53, 183188.Google Scholar
Rutter, M., Sonuga-Barke, E. J., Beckett, C., Castle, J., Kreppner, J., Kumsta, R., … & Gunnar, M. R. (2010). Deprivation-specific psychological patterns: Effects of institutional deprivation. Chicago, IL: Society for Research in Child Development.Google Scholar
Saxton, M. (2010). Child language: Acquisition and development. London: SAGE.Google Scholar
Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80(1), 146.Google Scholar
Spelke, E. S. (2017). Core knowledge, language, and number. Language Learning and Development, 13(2), 147170.Google Scholar
Siegler, R. S., & Lortie‐Forgues, H. (2014). Integrative theory of numerical development. Child Development Perspectives, 8(3), 144150.Google Scholar
Simms, V., Cragg, L., Gilmore, C., Marlow, N., & Johnson, S. (2013). Mathematics difficulties in children born very preterm: Current research and future directions. Archives of Disease in Childhood: Fetal and Neonatal Edition, 98(5), F457F463.Google Scholar
Skwarchuk, S. L., Sowinski, C., & LeFevre, J. A. (2014). Formal and informal home learning activities in relation to children’s early numeracy and literacy skills: The development of a home numeracy model. Journal of Experimental Child Psychology, 121, 6384.Google Scholar
Snow, C. (1983). Literacy and language: Relationships during the preschool years. Harvard Educational Review, 53(2), 165189.Google Scholar
Snowling, M. J., Bishop, D. V. M., Stothard, S. E., Chipchase, B., & Kaplan, C. (2006). Psychosocial outcomes at 15 years of children with a preschool history of speech-language impairment. Journal of Child Psychology and Psychiatry, 47(8), 759765.Google Scholar
Soska, K. C., Adolph, K. E., & Johnson, S. P. (2010). Systems in development: Motor skill acquisition facilitates three dimensional object completion. Developmental Psychology, 46(1), 129.Google Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10(1), 8996.Google Scholar
Stene-Larsen, K., Brandlistuen, R. E., Lang, A. M., Landolt, M. A., Latal, B., & Vollrath, M. E. (2014). Communication impairments in early term and late preterm children: A prospective cohort study following children to age 36 months. Journal of Pediatrics, 165, 6, 11231128.Google Scholar
Strickland, B., Fisher, M., Keil, F., & Knobe, J. (2014). Syntax and intentionality: An automatic link between language and theory-of-mind. Cognition, 133(1), 249261.Google Scholar
Stromswold, K. (2001). The heritability of language: A review and metaanalysis of twin, adoption, and linkage studies. Language, 77(4), 647723.Google Scholar
Suggate, S., Stoeger, H., & Fischer, U. (2017). Finger-based numerical skills link fine motor skills to numerical development in preschoolers. Perceptual and Motor Skills, 124(6), 10851106.Google Scholar
Sylva, K., Melhuish, E., Sammons, P., Siraj-Blatchford, I., & Taggart, B. (Eds.). (2010). Early childhood matters: Evidence from the effective pre-school and primary education project. London: Routledge.Google Scholar
Tamis-LeMonda, C. S., & Bornstein, M. H. (1993). Antecedents of exploratory competence at one year. Infant Behavior and Development, 16(4), 423439.Google Scholar
Taylor, C. M., Golding, J., Hibbeln, J., & Emond, A. M. (2013). Environmental factors predicting blood lead levels in pregnant women in the UK: The ALSPAC study. PLOS ONE, 8(9), e72371.Google Scholar
Teager, W., & McBride, T. (2018). An initial assessment of the 2-year-old free childcare entitlement: Drivers of take-up and impact on early years outcomes. London: Early Intervention Foundation. www.eif.org.uk/report/an-initial-assessment-of-the-2-year-old-free-childcare-entitlementGoogle Scholar
Thelen, E. (1991). Motor aspects of emergent speech: A dynamic approach. In Krasnegor, N. A., Rumbaugh, D. M., Schiefelbusch, R. L., & Studdert-Kennedy, M. (Eds.), Biological and behavioral determinants of language development (pp. 339362). Hillsdale, NJ: Erlbaum.Google Scholar
Thibaut, J. P., French, R., & Vezneva, M. (2010). The development of analogy making in children: Cognitive load and executive functions. Journal of Experimental Child Psychology, 106(1), 119.Google Scholar
Toll, S. W. M., & Van Luit, J. E. H. (2014). Explaining numeracy development in weak performing kindergartners. Journal of Experimental Child Psychology, 124, 97111.Google Scholar
Tomasello, M. (2009). Constructing a language. Cambridge, MA: Harvard University Press.Google Scholar
Tomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121125.Google Scholar
Tomasello, M., & Farrar, M. J. (1986). Joint attention and early language. Child Development, 57, 14541463.Google Scholar
Umiker-Sebeok, D. J. (1979). Preschool children’s intraconversational narratives. Journal of Child Language, 6(1), 91109.Google Scholar
Victora, C. G., Bahl, R., Barros, A. J., França, G. V., Horton, S., Krasevec, J., … & Rollins, N. C. (2016). Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. The Lancet, 387(10017), 475490.Google Scholar
Violato, M., Petrou, S., Gray, R., & Redshaw, M. (2011). Family income and child cognitive and behavioural development in the United Kingdom: Does money matter? Health Economics, 20(10), 12011225.Google Scholar
Waldfogel, J., & Washbrook, E. (2010). Low income and early cognitive development in the UK. London: Sutton Trust.Google Scholar
Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proceedings of the National Academy of Sciences, 109(S2), 1722117227.Google Scholar
Weisleder, A., & Fernald, A. (2013). Talking to children matters: Early language experience strengthens processing and builds vocabulary. Psychological Science, 24(11), 21432152.Google Scholar
Wellman, H. M. (2014). Making minds: How theory of mind develops. Oxford: Oxford University Press.Google Scholar
Wellman, H. M., & Liu, D. (2004). Scaling of theory‐of‐mind tasks. Child Development, 75(2), 523541.Google Scholar
Williamson, G. (2014). Mean length of utterance. www.sltinfo.com/mean-length-of-utterance/Google Scholar
Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155193.Google Scholar
Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24(2), 220251.Google Scholar
Wynn, K. (1995). Origins of numerical knowledge. Mathematical Cognition, 1, 3560.Google Scholar

References

Australian Curriculum Assessment and Reporting Authority. (2015a). About My School. www.myschool.edu.au/about/Google Scholar
Australian Curriculum Assessment and Reporting Authority. (2015b). About NAPLAN. www.nap.edu.au/about/test-developmentGoogle Scholar
Australian Curriculum Assessment and Reporting Authority. (2015c). ICSEA 2015: Technical report. Sydney.Google Scholar
Baker, C., Maguire, B., Daraganova, G., & Sipthorp, M. (2016). Using My School data in the Longitudinal Study of Australian Children (LSAC). LSAC technical paper no. 16. Melbourne: Australian Institute of Family Studies.Google Scholar
Britto, P. R., Lye, S. J., Proulx, K., Yousafzai, A. K., Matthews, S. G., Vaivada, T., … Bhutta, Z. A. (2017). Nurturing care: Promoting early childhood development. The Lancet, 389(10064), 91102. doi:10.1016/S0140-6736(16)31390-3Google Scholar
Bronfenbrenner, U. (1979). The ecology of human development. Cambridge, MA: Harvard University Press.Google Scholar
Bronfenbrenner, U., & Morris, P. (2006). The bioecological model of human development. In Lerner, R. & Damon, W. (Eds.), Handbook of child psychology: Theoretical models of human development (pp. 793828). Hoboken, NJ: Wiley.Google Scholar
Christensen, D., Taylor, C. L., & Zubrick, S. R. (2017). Patterns of multiple risk exposures for low receptive vocabulary growth 4–8 years in the Longitudinal Study of Australian Children. PLOS ONE, 12(1), e0168804. doi:10.1371/journal.pone.0168804Google Scholar
Christensen, D., Zubrick, S. R., Lawrence, D., Mitrou, F., & Taylor, C. L. (2014). Risk factors for low receptive vocabulary abilities in the preschool and early school years in the Longitudinal Study of Australian Children. PLOS ONE, 9(7), e101476. doi:10.1371/journal.pone.0101476Google Scholar
Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics: Estimation, open science, and beyond. New York, NY: Routledge.Google Scholar
Daraganova, G., Edwards, B., & Sipthorp, M. (2013). Using National Assessment Program — Literacy and Numeracy (NAPLAN) data in the Longitudinal Study of Australian Children (LSAC). LSAC technical paper no. 8. Melbourne: Australian Institute of Family Studies.Google Scholar
de Lemos, M., & Doig, B. (1999). Who am I? Developmental assessment manual. Melbourne: Australian Council for Education Research.Google Scholar
Dunn, L. M., Dunn, L. M., & Williams, K. T. (1997). Peabody Picture Vocabulary Test-III. Circle Pines, MN: American Guidance Service.Google Scholar
Goss, P., & Chisholm, C. (2016). Widening gaps: What NAPLAN tells us about student progress. Technical report. Melbourne: Grattan Institute.Google Scholar
Heckman, J. (2008). Schools, skills and synapses. Economic Inquiry, 46(3), 289324.Google Scholar
Hosmer, D., & Lemeshow, S. (1989). Applied logistic regression. New York, NY: Wiley Interscience.Google Scholar
Kagan, J. (2018). Kinds of individuals defined by patterns of variables. Development and Psychopathology, 30(4), 11971209. doi:10.1017/S095457941800055XGoogle Scholar
Kessler, R. C., Andrews, G., Colpe, L. J., Hiripi, E., Mrocrek, D. K., & Normand, S. L. (2002). Short screening scales to monitor population prevalence and trends in non-specific psychological distress. Psychological Medicine, 32, 959976. doi:10.1017/s0033291702006074Google Scholar
Lanza, S. T., & Cooper, B. R. (2016). Latent class analysis for developmental research. Child Development Perspectives, 10(1), 5964. doi:10.1111/cdep.12163Google Scholar
Lanza, S. T., & Rhoades, B. L. (2011). Latent class analysis: An alternative perspective on subgroup analysis in prevention and treatment. Prevention Science, 14(2), 157168. doi:10.1007/s11121-011-0201-1Google Scholar
Lanza, S. T., Rhoades, B. L., Nix, R. L., & Greenberg, M. T. (2010). Modeling the interplay of multilevel risk factors for future academic and behavior problems: A person-centered approach. Development and Psychopathology, 22(2), 313. doi:10.1017/S0954579410000088Google Scholar
Law, J., Rush, R., King, T., Westrupp, E., & Reilly, S. (2018). Early home activities and oral language skills in middle childhood: A quantile analysis. Child Development, 89(1), 295309.Google Scholar
Longitudinal Study of Australian Children. (2022). Accessing LSAC data. https://growingupinaustralia.gov.au/data-and-documentation/accessing-lsac-dataGoogle Scholar
Marmot, M. (2018). An inverse care law for our time. British Medical Journal, 362, k3216. doi:10.1136/bmj.k3216Google Scholar
Marmot, M., Friel, S., Bell, R., Houweling, T., & Taylor, S. (2008). Closing the gap in a generation: Health equity through action on the social determinants of health. The Lancet, 372(9650), 16611669. doi:10.1016/S0140-6736(08)61690-6Google Scholar
McLachlan, R., Gilfillan, G., & Gordon, J. (2013). Deep and persistent disadvantage in Australia. Staff working paper. Canberra: Productivity Commission.Google Scholar
Misson, S., & Sipthorp, N. (2007). LSAC technical paper no. 5: Wave 2 weighting and non-response. SSRN. doi:10.2139/ssrn.3857985Google Scholar
Muthén, L., & Muthén, B. (2015). Mplus user’s guide (7th ed.). Los Angeles, CA: Muthén and Muthén.Google Scholar
Organization for Economic Co-operation and Development (OECD). (2017). Starting strong 2017: Key OECD indicators on early childhood education and care. http://dx.doi.org/10.1787/9789264276116-enGoogle Scholar
Rothman, S. (2003). An Australian version of the Adapted PPVT-lll for use in research. Melbourne: Australian Council for Educational Research.Google Scholar
Sanson, A., Prior, M., Garino, E., Oberklaid, F., & Sewell, J. (1987). The structure of infant temperament: Factor analysis of the Revised Infant Temperament Questionnaire. Infant Behavior and Development, 10, 97104.Google Scholar
Sawyer, A. C. P., Chittleborough, C. R., Mittinty, M. N., Miller‐Lewis, L. R., Sawyer, M. G., Sullivan, T., & Lynch, J. W. (2015). Are trajectories of self‐regulation abilities from ages 2–3 to 6–7 associated with academic achievement in the early school years? Child: Care, Health and Development, 41(5), 744754. doi:10.1111/cch.12208Google Scholar
Sen, A. (1999). Development as freedom. Oxford: Oxford University Press.Google Scholar
Singer, J., & Willett, J. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York, NY: Oxford University Press.Google Scholar
Soloff, C., Lawrence, D., & Johnstone, R. (2005). LSAC sample design. LSAC technical paper no. 1. Melbourne: Australian Institute of Family Studies.Google Scholar
Soloff, C., Lawrence, D., Misson, S., & Johnstone, R. (2006). Wave 1 weighting and non-response. LSAC technical paper no. 3. (18329918). Melbourne: Australian Institute of Family Studies www.aifs.gov.au/growingup/pubs/technical/tp1.pdfGoogle Scholar
Taylor, C., Christensen, D., Lawrence, D., Mitrou, F., & Zubrick, S. (2013). Risk factors for children’s receptive vocabulary development from four to eight years in the Longitudinal Study of Australian Children. PLOS ONE, 8(9). doi:10.1371/journal.pone.0073046Google Scholar
Taylor, C., Zubrick, S., & Christensen, D. (2016). Barriers to parent–child book reading in early childhood. International Journal of Early Childhood, 48(3), 295309. doi:10.1007/s13158-016-0172-2Google Scholar
Taylor, C. L., Zubrick, S. R., & Christensen, D. (2019). Multiple risk exposures for reading achievement in childhood and adolescence. Journal of Epidemiology and Community Health, 73(5), 427434. doi:10.1136/jech-2018-211323Google Scholar
United Nations. (2019). Sustainable development goals. www.un.org/sustainabledevelopment/development-agenda/Google Scholar
Wechsler, D. (2004). The Wechsler intelligence scale for children (4th ed.). London: Pearson Assessment.Google Scholar
Zubrick, S. (2016). Longitudinal research: Applications for the design, conduct and dissemination of early childhood research. In Farrell, A., Kagan, S., & Tisdall, E. (Eds.), The SAGE handbook of early childhood research (pp. 201222). London: SAGE. doi:10.4135/9781473920859Google Scholar
Zubrick, S. R., Lucas, N., Westrupp, E., & Nicholson, J. M. (2014). Parenting measures in the Longitudinal Study of Australian Children: Construct validity and measurement quality, Waves 1 to 4. LSAC technical paper no. 12. Canberra: Department of Social Services.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×