Synthesizing thin diamond films by chemical vapor deposition (CVD) is the most recent and technologically important development in the thin-film field. Thin diamond films are useful in many applications because of their unique physical, chemical, optical, and electronic properties.
To assess thin diamond films’ suitability for support membranes in X-ray lithography, X-ray diffraction was used to characterize the crystal structure and orientation of these films deposited on silicon wafers by hot-filament assisted CVD. X-ray transmission properties of free-standing thin diamond films prepared by selectively etching silicon substrates were characterized by X-ray fluorescence in short and long wavelength regions.
This paper discusses conventional and grazing incidence diffraction techniques used to study the crystal structure of thin diamond films and compares the results with film morphology. It also describes X-ray transmission properties of these films in terms of Beer's Law, the mass absorption coefficient, and the wavelength of attenuated radiation. Finally, it reveals the long wavelength regions for optimum X-ray lithography operations using polycrystalline diamond (PCD) film.