Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T20:57:00.187Z Has data issue: false hasContentIssue false

The impending demise of the item in visual search

Published online by Cambridge University Press:  17 December 2015

Johan Hulleman
Affiliation:
Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom. johan.hulleman@manchester.ac.ukhttps://www.research.manchester.ac.uk/portal/johan.hulleman.html
Christian N. L. Olivers
Affiliation:
Department of Experimental and Applied Psychology, Institute for Brain & Behaviour Amsterdam, VU University, 1081 BT Amsterdam, The Netherlands. c.n.l.olivers@vu.nlhttp://www.vupsy.nl/staff-members/christian-olivers/

Abstract

The way the cognitive system scans the visual environment for relevant information – visual search in short – has been a long-standing central topic in vision science. From its inception as a research topic, and despite a number of promising alternative perspectives, the study of visual search has been governed by the assumption that a search proceeds on the basis of individual items (whether processed in parallel or not). This has led to the additional assumptions that shallow search slopes (at most a few tens of milliseconds per item for target-present trials) are most informative about the underlying process, and that eye movements are an epiphenomenon that can be safely ignored. We argue that the evidence now overwhelmingly favours an approach that takes fixations, not individual items, as its central unit. Within fixations, items are processed in parallel, and the functional field of view determines how many fixations are needed. In this type of theoretical framework, there is a direct connection between target discrimination difficulty, fixations, and reaction time (RT) measures. It therefore promises a more fundamental understanding of visual search by offering a unified account of both eye movement and manual response behaviour across the entire range of observed search efficiency, and provides new directions for research. A high-level conceptual simulation with just one free and four fixed parameters shows the viability of this approach.

Type
Target Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacon, W. F. & Egeth, H. E. (1994) Overriding stimulus-driven attentional capture. Perception and Psychophysics 55:485–96. doi: 10.3758/BF03205306.Google Scholar
Ball, K. K., Beard, B. L., Roenker, D. L., Miller, R. L. & Griggs, D. S. (1988) Age and visual search: Expanding the useful field of view. Journal of the Optical Society of America, A, Optics, Image, and Science 5:2210–19. doi: 10.1364/JOSAA.5.002210.CrossRefGoogle ScholarPubMed
Beck, J. (1972) Similarity grouping and peripheral discriminability under uncertainty. American Journal of Psychology 85:119. doi: 10.2307/1420955.Google Scholar
Beck, J. & Ambler, B. (1973) The effects of concentrated and distributed attention on peripheral acuity. Perception and Psychophysics 14:225–30. doi: 10.3758/BF03212381.Google Scholar
Becker, S. I. (2010) The role of target–distractor relationships in guiding attention and the eyes in visual search. Journal of Experimental Psychology: General 139:247–65. doi: 10.1037/a0018808.Google Scholar
Belopolsky, A. V. & Theeuwes, J. (2010) No capture outside the attentional window. Vision Research 50:2543–50. doi: 10.1016/j.visres.2010.08.023.CrossRefGoogle ScholarPubMed
Binello, A., Mannan, S. & Ruddock, K. H. (1995) The characteristics of eye movements during visual search with multi-element stimuli. Spatial Vision 9:343–62. doi: 10.1163/156856895X00043.Google Scholar
Bouma, H. (1970) Interaction effects in parafoveal letter recognition. Nature 226:177–78.CrossRefGoogle ScholarPubMed
Bundesen, C., Habekost, T. & Kyllingsbaek, S. (2005) A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review 112:291328. doi: 10.1037/0033-295X.112.2.291.CrossRefGoogle ScholarPubMed
Carrasco, M. (2011) Visual attention: The past 25 years. Vision Research 51:1484–525. doi: 10.1016/j.visres.2011.04.012.Google Scholar
Carrasco, M., Evert, D. L., Chang, E. & Katz, S. M. (1995) The eccentricity effect: Target eccentricity affects performance on conjunction searches. Perception and Psychophysics 57:1241–61. doi: 10.3758/BF03208380.Google Scholar
Chan, L. K. H. & Hayward, W. G. (2013) Visual search. WIREs Cognitive Science 4:415–29. doi: 10.1002/wcs.1235.Google Scholar
Chun, M. M. & Wolfe, J. M. (1996) Just say no: How are visual searches terminated when there is no target present? Cognitive Psychology 30:3978. doi: 10.1006/cogp.1996.0002.Google Scholar
Donnelly, N., Cave, K. R., Welland, M. & Menneer, T. (2006) Breast screening, chicken sexing and the search for oil: Challenges for visual cognition. Geological Society, London, Special Publications 254:4355. doi: 10.1144/GSL.SP.2006.254.01.04.Google Scholar
Drew, T., Evans, K. K., , M. L. H., Jacobson, F. L. & Wolfe, J. M. (2013a) Informatics in radiology: What can you see in a single glance and how might this guide visual search in medical images? Radiographics 33:263–74. doi: 10.1148/rg.331125023.CrossRefGoogle Scholar
Drew, T., , M. L. H., Olwal, A., Jacobson, F., Seltzer, S. E. & Wolfe, J. M. (2013b) Scanners and drillers: Characterizing expert visual search through volumetric images. Journal of Vision 13(10):3. doi: 10.1167/13.10.3.Google Scholar
Drew, T., , M. L. H. & Wolfe, J. M. (2013c) The invisible gorilla strikes again: Sustained inattentional blindness in expert observers. Psychological Science 24:1848–53. doi: 10.1177/0956797613479386.CrossRefGoogle ScholarPubMed
Duncan, J. (1985) Visual search and visual attention. In: Attention and performance XI: Attention and neuropsychology, ed. Posner, M. I. & Marin, O. S. M., pp. 85106. Erlbaum.Google Scholar
Duncan, J. & Humphreys, G. (1992) Beyond the search surface: Visual search and attentional engagement. Journal of Experimental Psychology: Human Perception and Performance 18:578–88. doi: 10.1037//0096-1523.18.2.578.Google ScholarPubMed
Duncan, J. & Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychological Review 96:433–58. doi: 10.1037/0033-295X.96.3.433.Google Scholar
Duncan, J., Ward, R. & Shapiro, K. (1994) Direct measurement of attentional dwell time in human vision. Nature 369:313–15. doi: 10.1038/369313a0.CrossRefGoogle ScholarPubMed
Eckstein, M. P. (2011) Visual search: A retrospective. Journal of Vision 11(5):14. doi: 10.1167/11.5.14.CrossRefGoogle ScholarPubMed
Eckstein, M. P., Thomas, J. P., Palmer, J. & Shimozaki, S. S. (2000) A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Perception and Psychophysics 62:425–51. doi: 10.3758/BF03212096.Google Scholar
Eimer, M. (2015) EPS Mid-Career Award 2014: The control of attention in visual search: Cognitive and neural mechanisms. Quarterly Journal of Experimental Psychology 68:2437–63. doi: 10.1080/17470218.2015.1065283.Google Scholar
Engel, F. L. (1977) Visual conspicuity, visual search and fixation tendencies of the eye. Vision Research 17:95108. doi: 10.1016/0042-6989(77)90207-3.Google Scholar
Evans, K. K., Birdwell, R. L. & Wolfe, J. M. (2013a) If you don't find it often, you often don't find it: Why some cancers are missed in breast cancer screening. PLoS ONE 8 (5):e64366. doi: 10.1371/journal.pone.0064366.CrossRefGoogle ScholarPubMed
Findlay, J. M. (1997) Saccade target selection during visual search. Vision Research 37:617–31. doi: 10.1016/S0042-6989(96)00218-0.Google Scholar
Findlay, J. M. & Gilchrist, I. D. (1998) Eye guidance and visual search. In: Eye guidance in reading, driving and scene perception, ed. Underwood, G., pp. 295312. Elsevier.Google Scholar
Findlay, J. M. & Gilchrist, I. D. (2001) Visual attention: The active vision perspective. In: Vision and attention, ed. Jenkins, M. & Harris, L., pp. 85105. Springer.Google Scholar
Findlay, J. M. & Gilchrist, I. D. (2005) Eye guidance and visual search. In: Cognitive Processes in Eye Guidance, ed. Underwood, G., pp. 259–81. Oxford University Press.Google Scholar
Geisler, W. S. & Chou, K. L. (1995) Separation of low-level and high-level factors in complex tasks: Visual search. Psychological Review 102:356–78. doi: 10.1037/0033-295X.102.2.356.Google Scholar
Gilchrist, I. D. & Harvey, M. (2000) Refixation frequency and memory mechanisms in visual search. Current Biology 10:1209–12. doi: 10.1016/S0960-9822(00)00729-6.CrossRefGoogle ScholarPubMed
Godwin, H. J., Menneer, T., Cave, K. R. & Donnelly, N. (2010) Dual-target search for high and low prevalence X-ray threat targets. Visual Cognition 18:1439–63. doi: 10.1080/13506285.2010.500605.Google Scholar
Greene, M. R. & Oliva, A. (2009) The briefest of glances: The time course of natural scene understanding. Psychological Science 20:464–72. doi: 10.1111/j.1467-9280.2009.02316.x.Google Scholar
Haber, R. N. (1983) The impending demise of the icon: The role of iconic processes in information processing theories of perception. Behavioral and Brain Sciences 6:111.Google Scholar
He, S., Cavanagh, P. & Intriligator, J. (1996) Attentional resolution and the locus of visual awareness. Nature 383:334–37. doi: 10.1038/383334a0.Google Scholar
Henderson, J. M. & Hollingworth, A. (1999) The role of fixation position in detecting scene changes across saccades. Psychological Science 10:438–43. doi: 10.1111/1467-9280.00183.Google Scholar
Hooge, I. T. C. & Erkelens, C. J. (1996) Control of fixation duration in a simple search task. Perception and Psychophysics 58:969–76. doi: 10.3758/BF03206825.Google Scholar
Horowitz, T. S. & Wolfe, J. M. (1998) Visual search has no memory. Nature 394:575–77. doi: 10.1038/29068.Google Scholar
Hulleman, J. (2009) No need for inhibitory tagging of locations in visual search. Psychonomic Bulletin and Review 16:116–20. doi: 10.3758/PBR.16.1.116.CrossRefGoogle ScholarPubMed
Hulleman, J. (2010) Inhibitory tagging in visual search: Only in difficult search are items tagged individually. Vision Research 50:2069–79. doi: 10.1016/j.visres.2010.07.017.Google Scholar
Hulleman, J. & Olivers, C. N. L. (2014) Search through complex motion displays does not break down under spatial memory load. Psychonomic Bulletin and Review 21:652–58. doi: 10.3758/s13423-013-0537-6.Google Scholar
Hulleman, J., Te Winkel, W. & Boselie, F. (2000) Concavities as basic features in visual search: Evidence from search asymmetries. Perception and Psychophysics 62:162–74. doi: 10.3758/BF03212069.Google Scholar
Humphreys, G. W. & Müller, H. J. (1993) SEarch via Recursive Rejection (SERR): A connectionist model of visual search. Cognitive Psychology 25:43110. doi: 10.1006/cogp.1993.1002.Google Scholar
Intriligator, J. & Cavanagh, P. (2001) The spatial resolution of visual attention. Cognitive Psychology 43:171216. doi: 10.1006/cogp.2001.0755.CrossRefGoogle ScholarPubMed
Itti, L. & Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research 40:1489–506. doi: 10.1016/S0042-6989(99)00163-7.Google Scholar
Jacobs, A. M. (1986) Eye-movement control in visual search: How direct is visual span control. Perception and Psychophysics 39:4758. doi: 10.3758/BF03207583.Google Scholar
Jonides, J. & Gleitman, H. (1972) A conceptual category effect of visual search: O as letter or as digit. Perception and Psychophysics 12:457–60. doi: 10.3758/BF03210934.Google Scholar
Kaptein, N. A., Theeuwes, J. & Van der Heijden, A. H. C. (1995) Search for a conjunctively defined target can be selectively limited to a color-defined subset of elements. Journal of Experimental Psychology: Human Perception and Performance 21:1053–69. doi: 10.1037/0096-1523.21.5.1053.Google Scholar
Klein, R. M. (1988) Inhibitory tagging system facilitates visual search. Nature 334:430–31. doi: 10.1038/334430a0.Google Scholar
Klein, R. M. & Farrell, M. (1989) Search performance without eye-movements. Perception and Psychophysics 46:476–82. doi: 10.3758/BF03210863.Google Scholar
Kusunoki, M. & Goldberg, M. E. (2003) The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. Journal of Neurophysiology 89:1519–27. doi: 10.1152/jn.00519.2002.CrossRefGoogle ScholarPubMed
Levi, D. M. (2008) Crowding: An essential bottleneck for object recognition: A mini-review. Vision Research 48:635–54. doi: 10.1016/j.visres.2007.12.009.Google Scholar
Li, H., Bao, Y., Pöppel, E. & Su, Y. H. (2014) A unique visual rhythm does not pop out. Cognitive Processes 15:9397. doi: 10.1007/s10339-013-0581-1.CrossRefGoogle Scholar
Mackworth, N. H. (1948) The breakdown of vigilance during prolonged visual search. Quarterly Journal of Experimental Psychology 1:621. doi: 10.1080/17470214808416738.Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W.H. Freeman.Google Scholar
McCarley, J. S., Wang, R. X. F., Kramer, A. F., Irwin, D. E. & Peterson, M. S. (2003) How much memory does oculomotor search have? Psychological Science 14:422–26. doi: 10.1111/1467-9280.01457.Google Scholar
McLeod, P., Driver, J. & Crisp, J. (1988) Visual search for a conjunction of motion and form is parallel. Nature 332:154–55. doi: 10.1038/332154a0.Google Scholar
Menneer, T., Barrett, D. J., Phillips, L., Donnelly, N. & Cave, K. R. (2007) Costs in searching for two targets: Dividing search across target types could improve airport security screening. Applied Cognitive Psychology 21:915–32. doi: 10.1002/acp.1305.Google Scholar
Moore, C. M. & Wolfe, J. M. (2001) Getting beyond the serial/parallel debate in visual search: A hybrid approach. In: The limits of attention: Temporal constraints on human information processing, ed. Shapiro, K., pp. 178–98. Oxford University Press.Google Scholar
Moran, R., Zehetleitner, M., Müller, H. J. & Usher, M. (2013) Competitive guided search: Meeting the challenge of benchmark RT-distributions. Journal of Vision 13(8):24. doi: 10.1167/13.8.24.CrossRefGoogle ScholarPubMed
Motter, B. C. & Belky, E. J. (1998a) The guidance of eye movements during active visual search. Vision Research 38:1805–15. doi: 10.1016/S0042-6989(97)00349-0.Google Scholar
Motter, B. C. & Belky, E. J. (1998b) The zone of focal attention during active visual search. Vision Research 38:1007–22. doi: 10.1016/S0042-6989(97)00252-6.CrossRefGoogle ScholarPubMed
Najemnik, J. & Geisler, W. S. (2008) Eye movement statistics in humans are consistent with an optimal search strategy. Journal of Vision 8(3):4. doi: 10.1167/8.3.4.Google Scholar
Nakayama, K. & Martini, P. (2011) Situating visual search. Vision Research 51:1526–37. doi: 10.1016/j.visres.2010.09.003.Google Scholar
Nakayama, K. & Silverman, G. H. (1986) Serial and parallel processing of visual feature conjunctions. Nature 320:264–65. doi: 10.1038/320264a0.CrossRefGoogle ScholarPubMed
Neider, M. B. & Zelinsky, G. J. (2008) Exploring set size effects in scenes: Identifying the objects of search. Visual Cognition 16(1):110.Google Scholar
Neisser, U. (1964) Visual search. Scientific American 210:94102. doi: 10.1038/scientificamerican0664-94.CrossRefGoogle ScholarPubMed
Neri, P. & Levi, D. M. (2006) Spatial resolution for feature binding is impaired in peripheral and amblyopic vision. Journal of Neurophysiology 96(1):142–53. doi: 10.1152/jn.01261.2005.Google Scholar
O'Regan, J. K., Lévy-Schoen, A. & Jacobs, A. M. (1983) The effect of visibility on eye-movement parameters in reading. Perception and Psychophysics 34:457–64. doi: 10.3758/BF03203061.Google Scholar
Olivers, C. N. L. & Meeter, M. (2006) On the dissociation between compound and present/absent tasks in visual search: Intertrial priming is ambiguity driven. Visual Cognition 13(1):128.Google Scholar
Olivers, C. N. L. & Van der Helm, P. A. (1998) Symmetry and selective attention: A dissociation between effortless perception and visual search. Perception and Psychophysics 60:1101–16. doi: 10.3758/BF03206161.Google Scholar
Over, E. A. B., Hooge, I. T. C., Vlaskamp, B. N. S. & Erkelens, C. J. (2007) Coarse-to-fine eye movement strategy in visual search. Vision Research 47:2272–80. doi: 10.1016/j. visres.2007.05.002.Google Scholar
Palmer, J., Verghese, P. & Pavel, M. (2000) The psychophysics of visual search. Vision Research 40:1227–68. doi: 10.1016/S0042-6989(99)00244-8.Google Scholar
Pashler, H. (1987) Detecting conjunctions of color and form: Reassessing the serial search hypothesis. Perception and Psychophysics 41:191201. doi: 10.3758/BF03208218.Google Scholar
Pelli, D. G., Palomares, M. & Majaj, N. J. (2004) Crowding is unlike ordinary masking: Distinguishing feature integration from detection. Journal of Vision 4(12):12. doi: 10.1167/4.12.12.CrossRefGoogle ScholarPubMed
Põder, E. (2008) Crowding with detection and coarse discrimination of simple visual features. Journal of Vision 8(4):24. doi: 10.1167/8.4.24.Google Scholar
Põder, E. & Wagemans, J. (2007) Crowding with conjunctions of simple features. Journal of Vision 7(2):23. doi: 10.1167/7.2.23.Google Scholar
Pomplun, M. (2007) Advancing area activation towards a general model of eye movements in visual search. In: Integrated models of cognitive systems, ed. Gray, W. D., pp. 120–31. Oxford University Press.CrossRefGoogle Scholar
Pomplun, M., Reingold, E. M. & Shen, J. Y. (2003) Area activation: A computational model of saccadic selectivity in visual search. Cognitive Science 27:299312. doi: 10.1016/S0364-0213(03)00003-X.CrossRefGoogle Scholar
Pylyshyn, Z. W. & Storm, R. W. (1988) Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3:179–97. doi: 10.1163/156856888X00122.CrossRefGoogle ScholarPubMed
Rao, R., Zelinsky, G., Hayhoe, M. & Ballard, D. (2002) Eye movements in iconic visual search. Vision Research 42:1447–63. doi: 10.1016/S0042-6989(02)00040-8.CrossRefGoogle ScholarPubMed
Rosenholtz, R., Huang, J. & Ehinger, K. A. (2012a) Rethinking the role of top-down attention in vision: Effects attributable to a lossy representation in peripheral vision. Frontiers in Psychology 3(13):115. doi: 10.3389/fpsyg.2012.00013.Google Scholar
Sanders, A. F. (1970) Some aspects of the selective process in the functional visual field. Ergonomics 13:101–17. doi: 10.1080/00140137008931124.Google Scholar
Scialfa, C. T. & Joffe, K. M. (1998) Response times and eye movements in feature and conjunction search as a function of target eccentricity. Perception and Psychophysics 60:1067–82. doi: 10.3758/BF03211940.Google Scholar
Sekuler, A. B., Bennett, P. J. & Mamelak, M. (2000) Effects of ageing on the useful field of view. Experimental Ageing Research 26:103–20. doi: 10.1080/036107300243588.Google ScholarPubMed
Smith, E. E. & Egeth, H. (1966) Effects of association value on perceptual search. Journal of Experimental Psychology 71:687–90. doi: 10.1037/h0023090.CrossRefGoogle ScholarPubMed
Theeuwes, J., Godijn, R. & Pratt, J. (2004) A new estimate of attentional dwell time. Psychonomic Bulletin and Review 11:6064. doi: 10.3758/BF03206461.Google Scholar
Thorpe, S., Fize, D. & Marlot, C. (1996) Speed of processing in the visual system. Nature 381:520–22. doi: 10.1038/381520a0.Google Scholar
Töllner, T., Rangelov, D. & Müller, H. J. (2012b) How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences of the United States of America 109:E1990–99. doi: 10.1073/pnas.1206382109.Google Scholar
Treisman, A. (1982) Perceptual grouping and attention in visual search for features and for objects. Journal of Experimental Psychology: Human Perception and Performance 8:194214.Google ScholarPubMed
Treisman, A. (1991) Search, similarity, and integration of features between and within dimensions. Journal of Experimental Psychology: Human Perception and Performance 17:652–76. doi: 10.1037/0096-1523.17.3.652.Google Scholar
Treisman, A. (2006) How the deployment of attention determines what we see. Visual Cognition 14:411–43. doi: 10.1080/13506280500195250.Google Scholar
Treisman, A. & Schmidt, H. (1982) Illusory conjunctions in the perception of objects. Cognitive Psychology 14:107–41. doi: 10.1016/0010-0285(82)90006-8.Google Scholar
Treisman, A. & Sato, S. (1990) Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance 16:459–78. doi: 10.1037/0096-1523.16.3.459.Google Scholar
Treisman, A. M. & Gelade, G. (1980) A feature-integration theory of attention. Cognitive Psychology 12:97136. doi: 10.1016/0010-0285(80)90005-5.Google Scholar
Verghese, P. (2001) Visual search and attention: A signal detection approach. Neuron 31:523–35. doi: 10.1016/S0896-6273(01)00392-0.Google Scholar
, M. L. H. & Wolfe, J. M. (2012) When does repeated search in scenes involve memory? Looking at versus looking for objects in scenes. Journal of Experimental Psychology: Human Perception and Performance 38:2341. doi: 10.1037/a0024147.Google Scholar
Volkman, F. C., Riggs, L. A., White, K. D. & Moore, R. K. (1978) Contrast sensitivity during saccadic eye movements. Vision Research 18:1193–99. doi: 10.1016/0042-6989(78)90104-9.Google Scholar
Watson, D. G. & Humphreys, G. W. (2000) Visual marking: Evidence for inhibition using a probe-dot detection paradigm. Perception and Psychophysics 62:471–81. doi: 10.3758/BF03212099.Google Scholar
Westheimer, G. (1982) The spatial grain of the perifoveal visual field. Vision Research 22:157–62. doi: 10.1016/0042-6989(82)90177-8.Google Scholar
Wolfe, J. M. (1992) “Effortless” texture segmentation and “parallel” visual search are not the same thing. Vision Research 32:757–63. doi: 10.1016/0042-6989(92)90190-T.Google Scholar
Wolfe, J. M. (1994) Guided search 2.0: A revised model of visual search. Psychonomic Bulletin and Review 1(2):202–38.Google Scholar
Wolfe, J. M. (1998a) Visual search. In: Attention, ed. Pashler, H., pp. 1373. University College London Press.Google Scholar
Wolfe, J. M. (1998b) What can 1 million trials tell us about visual search? Psychological Science 9:3339. doi: 10.1111/1467-9280.00006.Google Scholar
Wolfe, J. M. (2003) Moving towards solutions to some enduring controversies in visual search. Trends in Cognitive Sciences 7:7076. doi: 10.1016/S1364-6613(02)00024-4.Google Scholar
Wolfe, J. M. (2007) Guided Search 4.0: Current Progress with a model of visual search. In: Integrated models of cognitive systems, ed. Gray, W., pp. 99119. Oxford University Press.CrossRefGoogle Scholar
Wolfe, J. M., Alvarez, G. A., Rosenholtz, R. E., Kuzmova, Y. I. & Sherman, A. M. (2011a) Visual search for arbitrary objects in real scenes. Attention, Perception, and Psychophysics 73:1650–71. doi: 10.3758/s13414-011-0153-3.CrossRefGoogle ScholarPubMed
Wolfe, J. M., Brunelli, D. N., Rubinstein, J. & Horowitz, T. S. (2013) Prevalence effects in newly trained airport checkpoint screeners: Trained observers miss rare targets, too. Journal of Vision 13(3):33. doi: 10.1167/13.3.33.Google Scholar
Wolfe, J. M., Cave, K. R. & Franzel, S. L. (1989) Guided search: An alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance 15(3):419–33.Google Scholar
Wolfe, J. M. & Gancarz, G. (1996) Guided Search 3.0: A model of visual search catches up with Jay Enoch 40 years later. In: Basic and clinical applications of vision science, ed. Lakshminarayanan, V., pp. 189–92. Kluwer Academic.Google Scholar
Wolfe, J. M. & Horowitz, T. S. (2004) What attributes guide the deployment of visual attention and how do they do it? Nature Reviews Neuroscience 5:495501. doi: 10.1038/nrn1411.Google Scholar
Wolfe, J. M., Horowitz, T. S. & Kenner, N. M. (2005) Rare items often missed in visual searches. Nature 435(7041):439–40. doi: 10.1038/435439a.CrossRefGoogle ScholarPubMed
Wolfe, J. M., Horowitz, T. S. & Palmer, E. M. (2010a) RT-distributions constrain models of visual search. Vision Research 50:1304–11. doi: 10.1016/j.visres.2009.11.002.Google Scholar
Wolfe, J. M., O'Neill, P. & Bennett, S. C. (1998) Why are there eccentricity effects in visual search? Visual and attentional hypotheses. Perception and Psychophysics 60:140–56. doi: 10.3758/BF03211924.Google Scholar
Wolfe, J. M., , M. L. H., Evans, K. K. & Greene, M. R. (2011b) Visual search in scenes involves selective and non-selective pathways. Trends in Cognitive Sciences 15:7784. 10.1016/j.tics.2010.12.001.Google Scholar
Young, A. H. & Hulleman, J. (2013) Eye movements reveal how task difficulty moulds visual search. Journal of Experimental Psychology: Human Perception and Performance 39:168–90.Google Scholar
Zelinsky, G. J. (1996) Using eye saccades to assess the selectivity of search movements. Vision Research 36:2177–21.Google Scholar
Zelinsky, G. J. (2008) A theory of eye movements during target acquisition. Psychological Review 115:787835. doi: 10.1037/a0013118.Google Scholar
Zelinsky, G. J. (2012) TAM: Explaining off-object fixations and central fixation tendencies as effects of population averaging during search. Visual Cognition 20:515–45. doi: 10.1080/13506285.2012.666577.Google Scholar
Zelinsky, G. J., Adeli, H., Peng, Y. & Samaras, D. (2013) Modelling eye movements in a categorical search task. Philosophical Transactions of the Royal Society of London B: Biological Sciences 368(1628):20130058.Google Scholar
Zelinsky, G. J. & Sheinberg, D. L. (1995) Why some search tasks take longer than others: Using eye movements to redefine reaction times. In: Eye movement research: Mechanism, processes and applications, ed. Findlay, J. M., Walker, R. & Kentridge, R. W., pp. 325–36. Elsevier Science. doi: 10.1016/S0926-907X(05)80028-5.CrossRefGoogle Scholar
Zelinsky, G. J. & Sheinberg, D. L. (1997) Eye movements during parallel-serial visual search. Journal of Experimental Psychology: Human Perception and Performance 23:244–62. doi: 10.1037/0096-1523.23.1.244.Google Scholar