Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-14T03:45:54.205Z Has data issue: false hasContentIssue false

Parallel attentive processing and pre-attentive guidance

Published online by Cambridge University Press:  24 May 2017

Hermann J. Müller
Affiliation:
Department of Psychology, Ludwig-Maximilians-Universität München, Munich D-80802, Germany; hmueller@psy.lmu.deheinrich.liesefeld@psy.lmu.dehttp://www.psy.lmu.de/exp/people/prof/mueller/http://www.psy.lmu.de/exp/people/ma/liesefeld_hr/ Department of Psychological Sciences, Birkbeck College, University of London, London WC1E 7HX, United Kingdom; http://www.bbk.ac.uk/psychology/our-staff/academic/hermann-muller
Heinrich René Liesefeld
Affiliation:
Department of Psychology, Ludwig-Maximilians-Universität München, Munich D-80802, Germany; hmueller@psy.lmu.deheinrich.liesefeld@psy.lmu.dehttp://www.psy.lmu.de/exp/people/prof/mueller/http://www.psy.lmu.de/exp/people/ma/liesefeld_hr/
Rani Moran
Affiliation:
Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, United Kingdom; rani.moran@gmail.comhttps://iris.ucl.ac.uk/iris/browse/profile?upi=RMORA40 Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel. marius@post.tau.ac.ilhttps://en-social-sciences.tau.ac.il/profile/marius
Marius Usher
Affiliation:
School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel. marius@post.tau.ac.ilhttps://en-social-sciences.tau.ac.il/profile/marius

Abstract

This commentary focuses on two related, open questions in Hulleman & Olivers' (H&O's) proposal: (1) the nature of the parallel attentive process that determines target presence within, and thus presumably the size of, the functional visual field, and (2) how the pre-attentive guidance mechanism must be conceived to also account for search performance in tasks that afford no reliable target-based guidance.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Duncan, J. & Humphreys, G. W. (1989) Visual search and stimulus similarity. Psychological Review 96:433–58. doi: 10.1037/0033-295X.96.3.433.CrossRefGoogle ScholarPubMed
Humphreys, G. W. & Müller, H. J. (1993) SEarch via Recursive Rejection (SERR): A connectionist model of visual search. Cognitive Psychology 25:43110. doi: 10.1006/cogp.1993.1002.CrossRefGoogle Scholar
Itti, L. & Koch, C. (2001) Computational modelling of visual attention. Nature Reviews Neuroscience 2(3):194203.CrossRefGoogle ScholarPubMed
Liesefeld, H. R., Moran, R., Usher, M., Müller, H. J. & Zehetleitner, M. (2016) Search efficiency as a function of target saliency: The transition from inefficient to efficient search and beyond. Journal of Experimental Psychology: Human Perception and Performance 42(6):821–36. doi: 10.1037/xhp0000156.Google ScholarPubMed
Moran, R., Zehetleitner, M., Liesefeld, H. R., Müller, H. J., & Usher, M. (2016) Serial vs. parallel models of attention in visual search: accounting for benchmark RT-distributions. Psychonomic Bulletin and Review 23:1300–15. doi: 10.3758/s13423-015-0978-1.CrossRefGoogle ScholarPubMed
Moran, R., Zehetleitner, M., Müller, H. J. & Usher, M. (2013) Competitive guided search: Meeting the challenge of benchmark RT-distributions. Journal of Vision 13(8):24. doi: 10.1167/13.8.24.CrossRefGoogle ScholarPubMed
Müller, H. J., Heller, D. & Ziegler, J. (1995) Visual search for singleton feature targets within and across feature dimensions. Perception and Psychophysics 57:117. doi: 10.3758/BF03211845.CrossRefGoogle ScholarPubMed
Müller, H. J., Humphreys, G. W. & Donnelly, N. (1994) SEarch via Recursive Rejection (SERR): Visual search for single and dual form-conjunction targets. Journal of Experimental Psychology: Human Perception and Performance 20:235–58. doi: 10.1037/0096-1523.20.2.235.Google ScholarPubMed
Müller, H. J., Krummenacher, J. & Heller, D. (2004) Dimension-specific inter-trial facilitation in visual search for pop-out targets: Evidence for a top-down modulable visual short-term memory effect. Visual Cognition 11:577602. doi: 10.1080/13506280344000419.CrossRefGoogle Scholar
Müller, H. J., von Mühlenen, A. & Geyer, T. (2007) Top-down inhibition of distractors in parallel visual search. Perception and Psychophysics 69:1373–88. doi: 10.3758/BF03192953.CrossRefGoogle ScholarPubMed
Pomplun, M., Reingold, E. M. & Shen, J. Y. (2003) Area activation: A computational model of saccadic selectivity in visual search. Cognitive Science 27:299312. doi: 10.1016/S0364-0213(03)00003-X.CrossRefGoogle Scholar
Töllner, T., Rangelov, D. & Müller, H. J. (2012b) How the speed of motor-response decisions, but not focal-attentional selection, differs as a function of task set and target prevalence. Proceedings of the National Academy of Sciences of the United States of America 109:E1990–99. doi: 10.1073/pnas.1206382109.Google Scholar
Weidner, R. & Müller, H. J. (2013) Dimensional weighting in cross-dimensional singleton conjunction search. Journal of Vision 13(3):25. doi: 10.1167/13.3.25.CrossRefGoogle ScholarPubMed
Zelinsky, G. J. (2008) A theory of eye movements during target acquisition. Psychological Review 115:787835. doi: 10.1037/a0013118.CrossRefGoogle ScholarPubMed