The vertical distribution of flying mosquitoes was investigated in separate experiments in open savanna and over a fallow field system near Keneba Village in the tidal zone of the Gambia using suction traps located at seven levels (0·1, 0·25, 0·5, 1·0, 2·1, 3·9 and 7·9 m) on a scaffolding tower. Mosquito density declined progressively with height for Anopheles melas Theo., An. pharoensis Theo., An. squamosus Theo., An. ziemanni Grünb., Aedes dalzieli (Theo.), Ae. punctothoracis (Theo.), Culex tritaeniorhynchus Giles and Mansonia spp. Catches of C. thalassius Theo. and C. invidiosus Theo. increased with height to around 1 m and then decreased steadily although the 7·9–m trap consistently captured more C. thalassius than the trap below, presenting a bimodal vertical distribution profile. Flight altitudes of the two most abundant species, An. melas and C. thalassius, declined as the night progressed, but wind speed and lunar phase had no clear or consistent effects on flight levels. A functional relationship between flight altitudes and dispersal patterns of mosquitoes is suggested.