In this paper, we prove several new Turán density results for 3-graphs with independent neighbourhoods. We show: \begin{align*}\pi (K_4^-, C_5, F_{3,2})=12/49, \pi (K_4^-, F_{3,2})=5/18 \textrm {and} \pi (J_4, F_{3,2})=\pi (J_5, F_{3,2})=3/8,\end{align*}
\begin{align*}\pi (K_4^-, C_5, F_{3,2})=12/49, \pi (K_4^-, F_{3,2})=5/18 \textrm {and} \pi (J_4, F_{3,2})=\pi (J_5, F_{3,2})=3/8,\end{align*} $\binom{|A|}{2}$ 3-edges containing x. We also prove two Turán density results where we forbid certain induced subgraphs:
$\binom{|A|}{2}$ 3-edges containing x. We also prove two Turán density results where we forbid certain induced subgraphs: \begin{align*}\pi (F_{3,2}, \textrm { induced }K_4^-)=3/8 \textrm {and} \pi (K_5, 5\textrm {-set spanning exactly 8 edges})=3/4.\end{align*}
\begin{align*}\pi (F_{3,2}, \textrm { induced }K_4^-)=3/8 \textrm {and} \pi (K_5, 5\textrm {-set spanning exactly 8 edges})=3/4.\end{align*} \begin{align*}\pi (K_4, 4\textrm {-set spanning exactly 1 edge})=5/9.\end{align*}
\begin{align*}\pi (K_4, 4\textrm {-set spanning exactly 1 edge})=5/9.\end{align*}