Let  $K:=SO\left(2\right)A_1\cup SO\left(2\right)A_2\dots SO\left(2\right)A_{N}$ 
 where  $A_1,A_2,\dots, A_{N}$ 
  are matrices of non-zero determinant. Weestablish a sharp relation between the following two minimisationproblems in two dimensions. Firstly the N-well problem with surface energy. Let $p\in\left[1,2\right]$ 
 ,  $\Omega\subset \mathbb{R}^2$ 
  be a convex polytopal region. Define $$I^p_{\epsilon}\left(u\right)=\int_{\Omega} d^p\left(Du\left(z\right),K\right)+\epsilon\left|D^2u\left(z\right)\right|^2 {\rm d}L^2 z$$ 
 and let A F  denote the subspace of functions in $W^{2,2}\left(\Omega\right)$ 
  that satisfy the affine boundary conditionDu=F on  $\partial \Omega$ 
  (in the sense of trace), where  $F\not\inK$ 
 . We consider the scaling (with respect to ϵ) of $$m^p_{\epsilon}:=\inf_{u\in A_F} I^p_{\epsilon}\left(u\right).$$ 
 Secondly the finite element approximation to the N-well problemwithout surface energy. We will show there exists a space of functions  $\mathcal{D}_F^{h}$ 
  whereeach function  $v\in \mathcal{D}_F^{h}$ 
  is piecewise affine on a regular(non-degenerate) h-triangulation and satisfies the affine boundarycondition v=lF  on  $\partial \Omega$ 
  (where l F  is affine with $Dl_F=F$ 
 ) such that for $$\alpha_p\left(h\right):=\inf_{v\in \mathcal{D}_F^{h}}\int_{\Omega}d^p\left(Dv\left(z\right),K\right) {\rm d}L^2 z$$ 
 there exists positive constants  $\mathcal{C}_1<1<\mathcal{C}_2$ 
  (depending on $A_1,\dots, A_{N}$ 
 , p) for which the following holds true $$\mathcal{C}_1\alpha_p\left(\sqrt{\epsilon}\right)\leq m^p_{\epsilon}\leq\mathcal{C}_2\alpha_p\left(\sqrt{\epsilon}\right) \text{ for all }\epsilon>0.$$