We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
http://www.editorialmanager.com/iche/default.aspx.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
To ascertain opinions regarding etiology and preventability of hospital-onset bacteremia and fungemia (HOB) and perspectives on HOB as a potential outcome measure reflecting quality of infection prevention and hospital care.
Design:
Cross-sectional survey.
Participants:
Hospital epidemiologists and infection preventionist members of the Society for Healthcare Epidemiology of America (SHEA) Research Network.
Methods:
A web-based, multiple-choice survey was administered via the SHEA Research Network to 133 hospitals.
Results:
A total of 89 surveys were completed (67% response rate). Overall, 60% of respondents defined HOB as a positive blood culture on or after hospital day 3. Central line-associated bloodstream infections and intra-abdominal infections were perceived as the most frequent etiologies. Moreover, 61% thought that most HOB events are preventable, and 54% viewed HOB as a measure reflecting a hospital’s quality of care. Also, 29% of respondents’ hospitals already collect HOB data for internal purposes. Given a choice to publicly report central-line–associated bloodstream infections (CLABSIs) and/or HOB, 57% favored reporting either HOB alone (22%) or in addition to CLABSI (35%) and 34% favored CLABSI alone.
Conclusions:
Among the majority of SHEA Research Network respondents, HOB is perceived as preventable, reflective of quality of care, and potentially acceptable as a publicly reported quality metric. Further studies on HOB are needed, including validation as a quality measure, assessment of risk adjustment, and formation of evidence-based bundles and toolkits to facilitate measurement and improvement of HOB rates.
This survey investigated interventions used by acute-care hospitals to reduce the detection of asymptomatic bacteriuria. Half of the respondents reported using reflex urine cultures but with varied urinalysis criteria and perceived outcomes. Other diagnostic stewardship interventions for urine culture ordering and specimen quality were less common.
In 2017, we surveyed 101 SHEA Research Network hospitals regarding Legionnaires’ disease (LD). Of 29 respondents, 94% have or are developing a water management plan with varying characteristics and personnel engaged. Most LD diagnostic testing is limited to urine antigen testing. Many opportunities to improve LD prevention and diagnosis exist.
Central line-associated bloodstream infection (CLABSI) is associated with significant morbidity and mortality. Despite a nationwide decline in CLABSI rates, individual hospital success in preventing CLABSI is variable. Difficulty in interpreting and applying complex CLABSI metrics may explain this problem. Therefore, we assessed expert interpretation of CLABSI quality data. DESIGN. Cross-sectional survey PARTICIPANTS. Members of the Society for Healthcare Epidemiology of America (SHEA) Research Network (SRN) METHODS. We administered a 10-item test of CLABSI data comprehension. The primary outcome was percent correct of attempted questions pertaining to the CLABSI data. We also assessed expert perceptions of CLABSI reporting.
RESULTS
The response rate was 51% (n=67).Among experts, the average proportion of correct responses was 73% (95% confidence interval [CI], 69%–77%). Expert performance on unadjusted data was significantly better than risk-adjusted data (86% [95% CI, 81%–90%] vs 65% [95% CI, 60%–70%]; P<.001). Using a scale of 1 to 100 (0, never reliable; 100, always reliable), experts rated the reliability of CLABSI data as 61. Perceived reliability showed a significant inverse relationship with performance (r=–0.28; P=.03), and as interpretation of data improved, perceptions regarding reliability of those data decreased. Experts identified concerns regarding understanding and applying CLABSI definitions as barriers to care.
CONCLUSIONS
Significant variability in the interpretation of CLABSI data exists among experts. This finding is likely related to data complexity, particularly with respect to risk-adjusted data. Improvements appear necessary in data sharing and public policy efforts to account for this complexity.
Infection prevention in electrophysiology (EP) laboratories is poorly characterized; thus, we conducted a cross-sectional survey using the SHEA Research Network. We found limited uptake of basic interventions, such as surveillance and appropriate peri-procedural antimicrobial use. Further study is needed to identify ways to improve infection prevention in this setting.
To examine self-reported practices and policies to reduce infection and transmission of multidrug-resistant organisms (MDRO) in healthcare settings outside the United States.
DESIGN
Cross-sectional survey.
PARTICIPANTS
International members of the Society for Healthcare Epidemiology of America (SHEA) Research Network.
METHODS
Electronic survey of infection control and prevention practices, capabilities, and barriers outside the United States and Canada. Participants were stratified according to their country’s economic development status as defined by the World Bank as low-income, lower-middle-income, upper-middle-income, and high-income.
RESULTS
A total of 76 respondents (33%) of 229 SHEA members outside the United States and Canada completed the survey questionnaire, representing 30 countries. Forty (53%) were high-, 33 (43%) were middle-, and 1 (1%) was a low-income country. Country data were missing for 2 respondents (3%). Of the 76 respondents, 64 (84%) reported having a formal or informal antibiotic stewardship program at their institution. High-income countries were more likely than middle-income countries to have existing MDRO policies (39/64 [61%] vs 25/64 [39%], P=.003) and to place patients with MDRO in contact precautions (40/72 [56%] vs 31/72 [44%], P=.05). Major barriers to preventing MDRO transmission included constrained resources (infrastructure, supplies, and trained staff) and challenges in changing provider behavior.
CONCLUSIONS
In this survey, a substantial proportion of institutions reported encountering barriers to implementing key MDRO prevention strategies. Interventions to address capacity building internationally are urgently needed. Data on the infection prevention practices of low income countries are needed.
Healthcare personnel (HCP) attire is an aspect of the medical profession steeped in culture and tradition. The role of attire in cross-transmission remains poorly established, and until more definitive information exists priority should be placed on evidence-based measures to prevent healthcare-associated infections (HAIs). This article aims to provide general guidance to the medical community regarding HCP attire outside the operating room. In addition to the initial guidance statement, the article has 3 major components: (1) a review and interpretation of the medical literature regarding (a) perceptions of HCP attire (from both HCP and patients) and (b) evidence for contamination of attire and its potential contribution to cross-transmission; (2) a review of hospital policies related to HCP attire, as submitted by members of the Society for Healthcare Epidemiology of America (SHEA) Guidelines Committee; and (3) a survey of SHEA and SHEA Research Network members that assessed both institutional HCP attire policies and perceptions of HCP attire in the cross-transmission of pathogens. Recommendations for HCP attire should attempt to balance professional appearance, comfort, and practicality with the potential role of apparel in the cross-transmission of pathogens. Although the optimal choice of HCP attire for inpatient care remains undefined, we provide recommendations on the use of white coats, neckties, footwear, the bare-below-the-elbows strategy, and laundering. Institutions considering these optional measures should introduce them with a well-organized communication and education effort directed at both HCP and patients. Appropriately designed studies are needed to better define the relationship between HCP attire and HAIs.
We surveyed hospital epidemiologists and infection preventionists on their usage of and satisfaction with infection prevention–specific software supplementing their institution’s electronic medical record. Respondents with supplemental software were more satisfied with their software’s infection prevention and antimicrobial stewardship capabilities than those without. Infection preventionists were more satisfied than hospital epidemiologists.
To assess definitions, experience, and infection control practices for multidrug-resistant gram-negative bacteria (MDR-GNB), including Enterobacteriaceae, Acinetobacter, and Pseudomonas species, in acute care hospitals.
Design.
Cross-sectional survey.
Participants.
US and international members of the Society for Healthcare Epidemiology of America (SHEA) Research Network.
Methods.
Online survey that included definitions, infection control procedures, and microbiology capability related to MDR-GNB and other MDR bacteria.
Results.
From November 2012 through February 2013, 66 of 170 SHEA Research Network members responded (39% response rate), representing 26 states and 15 countries. More than 80% of facilities reported experience with each MDR-GNB isolate, and 78% had encountered GNB resistant to all antibiotics except colistin (62% Acinetobacter, 59% Pseudomonas, and 52% Enterobacteriaceae species). Participants varied regarding their definitions of “multidrug resistant,” with 14 unique definitions for Acinetobacter, 18 for Pseudomonas, and 22 for Enterobacteriaceae species. Substantial variation also existed in isolation practices. Although isolation was commonly used for methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), and carbapenem-resistant Enterobacteriaceae (CRE), approximately 20% of facilities did not isolate for MDR Pseudomonas or Acinetobacter. The majority of those that isolated MDR organisms also removed isolation using a wide variety of criteria.
Conclusion.
Facilities vary significantly in their approach to preventing MDR-GNB transmission. Although practices for MRSA and VRE are relatively standardized, emerging pathogens CRE and other MDR-GNB have highly varied definitions and management. This confusion makes communication difficult, and varied use of isolation may contribute to emergence of these organisms. Public health agencies need to promote standard definitions and management to enable broader initiatives to limit emergence of MDR-GNB.
To identify Choosing Wisely items for the American Board of Internal Medicine Foundation.
METHODS
The Society for Healthcare Epidemiology of America (SHEA) elicited potential items from a hospital epidemiology listserv, SHEA committee members, and a SHEA–Infectious Diseases Society of America compendium with SHEA Research Network members ranking items by Delphi method voting. The SHEA Guidelines Committee reviewed the top 10 items for appropriateness for Choosing Wisely. Five final recommendations were approved via individual member vote by committees and the SHEA Board.
RESULTS
Ninety-six items were proposed by 87 listserv members and 99 SHEA committee members. Top 40 items were ranked by 24 committee members and 64 of 226 SHEA Research Network members. The 5 final recommendations follow: 1. Don’t continue antibiotics beyond 72 hours in hospitalized patients unless patient has clear evidence of infection. 2. Avoid invasive devices (including central venous catheters, endotracheal tubes, and urinary catheters)and, if required, use no longer than necessary. They pose a major risk for infections. 3. Don’t perform urinalysis, urine culture, blood culture, or Clostridium difficile testing unless patients have signs or symptoms of infection. Tests can be falsely positive leading to overdiagnosis and overtreatment. 4. Do not use antibiotics in patients with recent C. difficile without convincing evidence of need. Antibiotics pose a high risk of C. difficile recurrence. 5. Don’t continue surgical prophylactic antibiotics after the patient has left the operating room. Five runner-up recommendations are included.
CONCLUSIONS
These 5 SHEA Choosing Wisely and 5 runner-up items limit medical overuse.
Optimal implementation of audit-and-feedback is an important part of advancing antimicrobial stewardship programs. Our survey demonstrated variability in how 61 programs approach audit-and-feedback. The median (interquartile range) number of recommendations per week was 9 (5–19) per 100 hospital-beds. A major perceived barrier to more comprehensive stewardship was lack of resources.
Whether contact precautions (CP) are required to control the endemic transmission of methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant Enterococcus (VRE) in acute care hospitals is controversial in light of improvements in hand hygiene, MRSA decolonization, environmental cleaning and disinfection, fomite elimination, and chlorhexidine bathing.
OBJECTIVE
To provide a framework for decision making around use of CP for endemic MRSA and VRE based on a summary of evidence related to use of CP, including impact on patients and patient care processes, and current practices in use of CP for MRSA and VRE in US hospitals.
DESIGN
A literature review, a survey of Society for Healthcare Epidemiology of America Research Network members on use of CP, and a detailed examination of the experience of a convenience sample of hospitals not using CP for MRSA or VRE.
PARTICIPANTS
Hospital epidemiologists and infection prevention experts.
RESULTS
No high quality data support or reject use of CP for endemic MRSA or VRE. Our survey found more than 90% of responding hospitals currently use CP for MRSA and VRE, but approximately 60% are interested in using CP in a different manner. More than 30 US hospitals do not use CP for control of endemic MRSA or VRE.
CONCLUSIONS
Higher quality research on the benefits and harms of CP in the control of endemic MRSA and VRE is needed. Until more definitive data are available, the use of CP for endemic MRSA or VRE in acute care hospitals should be guided by local needs and resources.
Infect Control Hosp Epidemiol 2015;36(10):1163–1172
Hospital Ebola preparation is underway in the United States and other countries; however, the best approach and resources involved are unknown.
OBJECTIVE
To examine costs and challenges associated with hospital Ebola preparation by means of a survey of Society for Healthcare Epidemiology of America (SHEA) members.
DESIGN
Electronic survey of infection prevention experts.
RESULTS
A total of 257 members completed the survey (221 US, 36 international) representing institutions in 41 US states, the District of Columbia, and 18 countries. The 221 US respondents represented 158 (43.1%) of 367 major medical centers that have SHEA members and included 21 (60%) of 35 institutions recently defined by the US Centers for Disease Control and Prevention as Ebola virus disease treatment centers. From October 13 through October 19, 2014, Ebola consumed 80% of hospital epidemiology time and only 30% of routine infection prevention activities were completed. Routine care was delayed in 27% of hospitals evaluating patients for Ebola.
LIMITATIONS
Convenience sample of SHEA members with a moderate response rate.
CONCLUSIONS
Hospital Ebola preparations required extraordinary resources, which were diverted from routine infection prevention activities. Patients being evaluated for Ebola faced delays and potential limitations in management of other diseases that are more common in travelers returning from West Africa.