The model considered in this paper describes a queueing system in which the station is dismantled at the end of a busy period and re-established on arrival of a new customer, in such a way that the closing-down process consists of N1 phases of random duration and that a customer 𝒞n who arrives while the station is being closed down must wait a random time idn(i = 1, ···, N1) if the ith phase is going on at the arrival instant. (For each fixed index i, the random variables idn are identically distributed.) A customer 𝒞n arriving when the closing-down of the station is already accomplished has to wait a random time (N1 + 1)dn corresponding to the set up time of the station. Besides, a customer 𝒞n who arrives when the station is busy has to wait an additional random time 0dn. We thus have (N1 + 2) types of “delay” (additional waiting time). Similarly, we consider (N2 + 2) types of service time and (N3 + 2) probabilities of joining the queue. This may be formulated as a model with (N + 2) types of triplets (delay, service time, probability of joining the queue). We consider the general case where the random variables defining the model all have an arbitrary distribution.
The process {wn}, where wn denotes the waiting time of customer 𝒞n if he joins the queue at all, is not necessarily Markovian, so that we first study (by algebraic considerations) the transient behaviour of a Markovian process {vn} related to {wn}, and then derive the distribution of the variables wn.