For milk from four herds of cows, maintained under different conditions of feeding and management, the natural Cu content and the stability of the ascorbate were highly correlated. Low Cu levels in milk from cows at pasture at farms A and B during the summer were associated with low storage losses of ascorbate. During this period, the milk of cows at farms C and D (on forage and Cu-supplemented concentrate) was richer in Cu, and losses of ascorbate were high. Heat treatment of the milk stabilized the ascorbate. Thus, in ‘high Cu’ milk (60 µg Cu/l), loss of ascorbate in the raw milk was 58% at 2 d, as against 17% after pasteurization at 72 °C and no loss after treatment at 82 °C. Storage of milk in light caused rapid destruction of ascorbate, equally with 72 and 82 °C heat treatments. The effects were examined of milk pasteurization temperature (72–82 °C) on flavour stability, bacteriological quality and vitamins of the B-complex. Heat treatment at 82 °C increased the susceptibility of vitamin B12 to destruction by light, but otherwise caused no greater losses of B-complex vitamins than did treatment at 72 °C. Taste panel ratings showed an initial preference for milk heated at 72 °C, but on storage of this milk in darkness the flavour score fell progressively and at 5 d it was judged ‘stale’. Treatment at 82 °C gave a faint ‘cooked’ flavour although, unlike that of the 72 °C-treated milk, the flavour remained stable throughout 14-d storage and after d 8 was increasingly preferred. On exposure to light after treatment at 72 °C milks rapidly acquired an unpleasant‘oxidized’ flavour, but after treatment at 82 °C, exposure to light had no such adverse effect on flavour during the early days of storage. Pasteurization at ∼ 80 °C offers a potential for improvement in the oxidative stability of milk and its contribution of vitamin C to the diet.