Published online by Cambridge University Press: 12 March 2014
With reservations, one can think of abstract algebra as the study of what consequences can be drawn from the axioms associated with certain concrete algebraic structures. Two important examples of such concrete algebraic structures are the integers and the rational numbers. The integers and the rational numbers have two properties which are not in general mirrored in the abstract axiom systems associated with them. That is, the integers and the rational numbers both have effectively computable metrics and their algebraic operations are effectively computable. The study of abstract algebraic systems which possess effectively computable algebraic operations has produced many interesting results. One can think of a computable algebraic structure as one whose elements have been labeled by the set of positive integers and whose operations are effectively computable. The formal definition of computable local integral domain will be given in §3. Some specific computable structures which have been studied are the integers, the rational numbers, and the rational numbers with p-adic valuation. Computable structures were studied in general by Rabin [12]. This paper concerns computable local integral domains as exemplified by the local integral domain Zp. Zp is the localization of the integers with respect to the maximal prime ideal generated by the positive prime p. We should note that the concept of local integral domain is not first order.
Let the ordered pair (Q, M) stand for a local ring, where Q is the local ring and M is the unique maximal prime ideal of Q. Since most of my results are proving the existence of certain effective procedures, the assumption that Q has a principal maximal ideal M (rather than M has n generators) greatly simplifies many of the proofs.