Of a wide range of algae tested, juvenile Convoluta roscoffensis ingested only Platymonas convolutae, the natural symbiont; related species of the genera Platymonas, Prasinocladus and Tetraselmis; and Chlamydomonas coccoides. Platymonas convolutae was not ingested to a greater extent than Prasinocladus marinus, Tetraselmis tetrathele and Tetraselmis verrucosa, or taken up in preference to T. verrucosa when animals were exposed to a choice between the two species. Convoluta ingested fewer cells of C. coccoides than P. convolutae and related species. Uptake of P. convolutae was not affected by pretreatment of the cells with lectins or proteases, incubation in media of pH 5·0–9·0 or inhibition of algal photosynthesis, but was substantially reduced if the algae were killed.
Cells of P. convolutae, Pr. marinus, T. tetrathele and T. verrucosa persisted and divided in juvenile Convoluta. The algal population in the worms started to increase 2–3 d after ingestion and within 15–20 d the animals were uniformly green. These algae formed a viable symbiosis with Convoluta and promoted the growth of the animals. In contrast, C. coccoides cells did not persist in Convoluta for more than 12–24 h a nd were probably disrupted.
P. convolutae cells lost their thecae within a few days of ingestion and before migration from the central to sub-epidermal region of the animal. Animal vacuoles surrounded recently ingested thecate algae. Structural studies of the adult symbiosis suggest that the algae were also intracellular and enclosed in vacuoles.
It is proposed that Convoluta discriminates against algae unrelated to P. convolutae on initial contact and in the central region of the host. The nature of the recognition mechanism(s) has not been established.