To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.
Most read
This page lists the top ten most read articles for this journal based on the number of full text views and downloads recorded on Cambridge Core over the last 90 days. This list is updated on a daily basis.
This paper contains some applications of the description of knot diagrams by genus, and Gabai’s methods of disk decomposition. We show that there exists no genus one knot of canonical genus 2, and that canonical genus 2 fiber surfaces realize almost every Alexander polynomial only finitely many times (partially confirming a conjecture of Neuwirth).
In this paper we determine the suborbits of Janko’s largest simple group in its conjugation action on each of its two conjugacy classes of involutions. We also provide matrix representatives of these suborbits in an accompanying computer file. These representatives are used to investigate a commuting involution graph for J4.
We use the technique of Fischer matrices to write a program to produce the character table of a group of shape (2×2.G):2 from the character tables of G, G:2, 2.G and 2.G:2.
The paper describes a procedure for determining (up to algebraic conjugacy) the conjugacy class in which any element of the Monster lies, using computer constructions of representations of the Monster in characteristics 2 and 7. This procedure has been used to calculate explicit representatives for each conjugacy class.
The authors present three-point and four-point covers having bad reduction at 2 and 3 only, with Galois group An or Sn for n equal to 9, 10, 12, 18, 28, and 33. By specializing these covers, they obtain number fields ramified at 2 and 3 only, with Galois group An or Sn for n equal to 9, 10, 11, 12, 17, 18, 25, 28, 30, and 33.
We show how one can obtain an asymptotic expression for some special functions with a very explicit error term starting from appropriate upper bounds. We will work out the details for the Bessel function $J_\nu (x)$ and the Airy function ${\rm Ai}(x).$ In particular, we answer a question raised by Olenko and find a sharp bound on the difference between $J_\nu (x)$ and its standard asymptotics. We also give a very simple and surprisingly precise approximation for the zeros ${\rm Ai}(x).$