Published online by Cambridge University Press: 24 October 2008
It is known as a result of various experiments on slow neutrons (1) that a heavy nucleus possesses an enormous number of energy levels which are very closely spaced if the nucleus is highly excited. Strong theoretical reasons for the existence of this great number of levels were given by Bohr (2) and since then various attempts have been made to calculate the number of energy levels of a heavy nucleus. In the first of these, due to Bethe(3), it was assumed that the interaction between the nucleons was small so that the nucleus could be treated as a gas. The alternative assumption, that we may consider the interaction to be large in comparison with the kinetic energy of the nucleons, was proposed by Bohr and Kalckar(4). In the present note we assume as our model a nucleus consisting of neutrons and protons independent of one another; we then have a neutron-gas in equilibrium with a proton-gas, Fermi-Dirac statistics being applied to both.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.