The method of matched (or of ‘inner and outer’) asymptotic expansions is reviewed, with particular reference to two general techniques which have been proposed for ‘matching’; that is, for establishing a relationship between the inner and outer expansions, to finite numbers of terms, of an unknown function. It is shown that the first technique, which uses the idea of overlapping of the two expansions, can be difficult and laborious in some applications; while the second, which is the ‘asymptotic matching principle’ in the form stated by Van Dyke(13) can be incorrect. Two different sets of conditions sufficient for the validity of the asymptotic matching principle are then established, on the basis of assumptions about the structure of expressions which approximate to the desired function f(x,∈) for all relevant values of x. Finally, it is noted that in four classes of singular-perturbation problems for which complete and rigorous asymptotic theories exist, uniform approximations to the solutions have a structure which is a particular form of the general one assumed in this paper.