A new technique for selective metallization of aluminum nitride (AIN) has been previously reported (1). It involves the use of an excimer laser to activate the AIN surface followed by electroless plating (Cu,Ni,Au) of the irradiated areas. The mechanism of decomposition of ALN is accompanied by ablation and the formation of an Al film on the substrate surface. Ablation rates are reported here as a function of fluence and number of pulses for three different wavelengths λ = 193 nm (ArF), λ = 248 (KrF) and λ = 351 nm (XeF).
The effect of laser wavelength on the ablation rate is discussed. The ablation rates for Al were zlso measured and are compared with the AIN ablation rates. A numerical thermal model is used to analyze the mechanisms of laser ablation of both materials. The evaporation kinetics are incorporated into the model. The Clausius-Clapeyron approximation is used to make a self-consistent calculation of boiling and decomposition temperatures.