Supersaturated high-conductivity polycrystalline silicon (polysilicon) formed by rapid thermal processing (RTP) is a promising new material for emitters, contacts and diffusion sources in advanced high-speed bipolar and MOS IC technologies.
A matrix of processing conditions was used to evaluate the effect of polysilicon thickness, implant dose, RTP conditions and the nature of the substrate on the dopant diffusion in both the polysilicon and single crystal substrate and also on the interface properties.
Results of conductivity measurements, spreading resistance profiling (SRP), secondary ion mass spectroscopy (SIMS), transmission electron microscopy (TEM) and Rutherford backscattering spectroscopy (RBS)/channeling are presented. The results have proved the formation of shallow, defect-free junctions and epitaxial emitters with low series resistance and improved contact properties.