Summary 449
I. INTRODUCTION 450
II. THE PARTNERS 451
1. Cyanobionts and their role 451
2. Hosts and their role 453
3. Location of cyanobionts in their hosts 455
III. INITIATION AND DEVELOPMENT OF SYMBIOSES 458
1. Initiation of symbioses 458
2. Geosiphon pyriforme 458
3. Cyanolichens 459
4. Liverworts and hornworts 460
5. Azolla 460
6. Cycads 461
7. Gunnera 461
IV. THE SYMBIOSES 462
1. Geographical distribution and ecological significance 462
2. Benefits to the partners 462
(a) Benefits to the cyanobionts 462
(b) Benefits to the hosts 463
3. Duration and stability 463
4. Mode of transmission and perpetuation 463
5. Recognition between the partners 464
6. Specificity and diversity 464
7. Symbiosis-related genes 465
8. Modifications of the cyanobiont 466
(a) Growth and morphology 466
(b) Photosynthesis and carbon metabolism 467
(c) Glutamine synthetase 467
(d) Heterocysts 469
(e) N2fixation 470
9. Nutrient exchange 471
(a) Carbon 471
(b) Nitrogen 472
V. EVOLUTIONARY ASPECTS 472
VI. ARTIFICIAL SYMBIOSES 474
VII. FUTURE OUTLOOK AND PERSPECTIVES 475
1. Cryptic symbioses 476
2. Developmental profile of symbiotic tissues 476
3. Sensing and signalling 476
4. Genetic aspects 476
5. Physiological and biochemical aspects of nutrient exchange 477
6. Microaerobiosis 477
7. Potential applications 477
Acknowledgements 477
References 477
Cyanobacteria are an ancient, morphologically diverse group of prokaryotes with an oxygenic photosynthesis.
Many cyanobacteria also possess the ability to fix N2. Although well suited to an independent existence in nature,
some cyanobacteria occur in symbiosis with a wide range of hosts (protists, animals and plants). Among plants,
such symbioses have independently evolved in phylogenetically diverse genera belonging to the algae, fungi,
bryophytes, pteridophytes, gymnosperms and angiosperms. These are N2-fixing symbioses involving heterocystous cyanobacteria, particularly Nostoc, as cyanobionts (cyanobacterial partners). A given host species
associates with only a particular cyanobiont genus but such specificity does not extend to the strain level. The
cyanobiont is located under a microaerobic environment in a variety of host organs and tissues (bladder, thalli and
cephalodia in fungi; cavities in gametophytes of hornworts and liverworts or fronds of the Azolla sporophyte;
coralloid roots in cycads; stem glands in Gunnera). Except for fungi, the hosts form these structures ahead of the
cyanobiont infection. The symbiosis lasts for one generation except in Azolla and diatoms, in which it is
perpetuated from generation to generation. Within each generation, multiple fresh infections occur as new
symbiotic tissues and organs develop. The symbioses are stable over a wide range of environmental conditions,
and sensing–signalling between partners ensures their synchronized growth and development. The cyanobiont
population is kept constant in relation to the host biomass through controlled initiation and infection, nutrient supply and cell division. In most cases, the partners have remained facultative, with the cyanobiont residing
extracellularly in the host. However, in the water-fern Azolla and the freshwater diatom Rhopalodia the association
is obligate. The cyanobionts occur intracellularly in diatoms, the fungus Geosiphon and the angiosperm Gunner a.
Close cell–cell contact and the development of special structures ensure efficient nutrient exchange between the
partners. The mobile nutrients are normal products of the donor cells, although their production is increased in
symbiosis. Establishment of cyanobacterial–plant symbioses differs from chloroplast evolution. In these
symbioses, the cyanobiont undergoes structural–functional changes suited to its role as provider of fixed N rather
than fixed C, and the level of intimacy is far less than that of an organelle. This review provides an updated account
of cyanobacterial–plant symbioses, particularly concerning developments during the past 10 yr. Various aspects
of these symbioses such as initiation and development, symbiont diversity, recognition and signalling,
structural–functional modifications, integration, and nutrient exchange are reviewed and discussed, as are
evolutionary aspects and the potential uses of cyanobacterial–plant symbioses. Finally we outline areas that require
special attention for future research. Not only will these provide information of academic interest but they will also
help to improve the use of Azolla as green manure, to enable us to establish artificial N2-fixing associations with
cereals such as rice, and to allow the manipulation of free-living cyanobacteria for photobiological ammonia or
hydrogen production or for use as biofertilizers.