Some of the most imaginative analyses in contemporary science have been fostered by the paradox of irreversibility. Rendered as a question the paradox reads: How can the anisotropic macrophysical behavior of a system of molecules be reconciled with the underlying reversible molecular model? Attempts to resolve and dissolve the paradox have appealed to large numbers of particles, jammed correlations, unseen perturbations, hidden variables or constraints, uncertainty principles, averaging procedures (e.g., coarse graining and time smoothing), stochastic flaws, cosmological origins, etc.
While acknowledging these efforts as important articulations of basic ideas of statistical mechanics, we question their relevance to irreversibility as it occurs in nature. It seems to us that once the emergence of the phenomenon of equilibrium is understood in terms of molecular dynamics, the macroscopic appearance of irreversibility can also be understood in terms of the frequency of forced withdrawals from young equilibria. We believe that the paradox of irreversibility can be resolved in a simple, logically clear, and aesthetically pleasing manner.