Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T19:41:38.010Z Has data issue: false hasContentIssue false

Newer aspects of micronutrients in chronic disease: copper

Published online by Cambridge University Press:  28 February 2007

J. J. Strain
Affiliation:
Human Nutrition Research Group, University of Ulster, Coleraine BT52 1SA, Northern Ireland
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
‘Newer aspects of micronutrients’
Copyright
Copyright © The Nutrition Society 1994

References

Akers, T. K. & Saari, J. T. (1993). Hyperbaric hyperoxia exaggerates respiratory membrane defects in the copper-deficient rat lung. Biological Trace Element Research 38, 149163.Google Scholar
Allen, K. G. D., Arthur, J. R., Morrice, P. C., Nicol, F. & Mills, C. F. (1988). Copper deficiency and tissue glutathione concentration in the rat. Proceedings of the Society of Experimental Biology and Medicine 187, 3843.CrossRefGoogle ScholarPubMed
Anonymous (1992). Pathways of nutritional biochemistry: nitric oxide and vasodilation. Journal of Nutritional Biochemistry 3, 437438.Google Scholar
Arnaud, J. (1994). Copper. International Journal for Vitamin and Nutrition Research 63, 308311.Google Scholar
Arthur, J. R., Morrice, P. C., Nicol, F., Beddows, S. E., Boyd, R., Hayes, J. D. & Beckett, G. J. (1987). The effects of selenium and copper deficiencies on glutathione S-transferase and glutathione peroxidase in rat liver. Biochemical Journal 248, 539544.Google Scholar
Bauer, K. A. (1994). Hypercoagulability – a new cofactor in the protein C anticoagulant pathway. New England Journal of Medicine 330, 566567.Google Scholar
Belch, J. J. F., Chopra, M., Hutchinson, S., Stanick, R. D., Forbes, C. D. & Smith, W. E. (1989). Free radical pathology in chronic arterial disease. Free Radical Biology and Medicine 6, 375378.CrossRefGoogle ScholarPubMed
Bode, A. M., Miller, L. A., Faber, J. & Saari, J. T. (1992). Mitochondrial respiration in hear., liver, and kidney of copper-deficient rats. Journal of Nutritional Biochemistry 3, 668672.Google Scholar
Brown, J. C. W. & Strain, J. J. (1990). Effect of dietary homocysteine on copper status in rats. Journal of Nutrition 120, 10681074.Google Scholar
Cappel, R. E. & Gilbert, H. F. (1988). Thiol-disulfide exchange between 3-hydroxy-3-methylglutaryl CoA reductase and glutathione. Journal of Biological Chemistry 263, 1220412212.CrossRefGoogle ScholarPubMed
Chao, P. Y. & Allen, K. G. D. (1992). Glutathione production in copper-deficient isolated rat hepatocytes. Free Radical Biology and Medicine 12, 145150.Google Scholar
Cheeseman, K. H. & Slater, T. F. (1993). An introduction to free radical biochemistry. British Medical Bulletin 49, 481493.Google Scholar
Coulson, W. & Carnes, W. W. H. (1962). Cardiovascular studies on copper deficient swine. XIII. The effect of chronic copper deficiency on the cardiovascular system of miniature pigs. Laboratory Investigation 11, 13161321.Google Scholar
Dahlbäck, B., Carosson, M. & Svensson, P. J. (1993). Familial thrombophilia due to a previously unrecognised mechanism characterised by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C. Proceedings of the National Academy of Sciences USA 90, 10041008.Google Scholar
Dahlbäck, B. & Hildebrand, B. (1994). Inherited resistance to activated protein C is corrected by anticoagulant cofactor activity found to be a property of factor V. Proceedings of the National Academy of Sciences USA 91, 13961400.CrossRefGoogle ScholarPubMed
Danks, D. M. (1988). Copper deficiency in humans. Annual Review of Nutrition 8, 235257.Google Scholar
Davidson, J., Medeiros, D. M. & Hamlin, R. L. (1992). Cardiac ultrastructural and electrophysiological abnormalities in postweanling copper-restricted and copper-repleted rats in the absence of hypertrophy. Journal of Nutrition 122, 15661575.Google Scholar
Davidson, J., Medeiros, D. M. Hamlin, R. L. & Jenkins, J. E. (1993). Submaxima., aerobic exercise training exacerbates the cardiomyopathy of postweanling Cu-depleted rats. Biological Trace Element Research 38, 251272.Google Scholar
DiSilvestro, R. A. (1990). Influence of dietary coppe., copper injections and inflammation on rat serum caeruloplasmin activity levels. Nutrition Research 10, 355358.Google Scholar
DiSilvestro, R. A. & Medeiros, D. M. (1992). Low and marginal copper intake of postweanling rats: effects on copper status and resistance to carbon tetrachloride hepatotoxicity. Metabolism 41, 11221124.CrossRefGoogle ScholarPubMed
Dubick, M. A., Hunter, G. C., Casey, S. M. & Keen, C. L. (1987). Aortic ascorbic aci., trace elements and superoxide dismutase activity in human aneurysmal and occlusive disease. Proceedings of the Sociery for Experimental Biology and Medicine 184, 138143.Google Scholar
Dubick, M. A., Zidenberg-Cherr, S., Rucker, R. B. & Keen, C. L. (1988). Superoxide dismutase activity in lung from copper- and manganese-deficient mice exposed to ozone. Toxicology Letters 42, 149154.Google Scholar
Esterbauer, H., Gebicki, J., Puhl, H. & Jürgens, G. (1992). The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radical Biology and Medicine 13, 341390.Google Scholar
Fields, M., Lewis, C. G. & Lure, M. D. (1993). Copper deficiency in rats: the effect of dietary protein. Journal of the American College of Nutrition 12, 303306.CrossRefGoogle ScholarPubMed
Gerzer, R., Bohme, E., Hofmann, F. & Schultz, G. (1981). Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Letters 132, 7174.Google Scholar
Griffin, J. H., Evatt, B., Wideman, C. & Fermandez, J. A. (1993). Anticoagulant protein C pathway defective in majority of thrombophilic patients. Blood 82, 19891993.Google Scholar
Halliwell, B. & Chirico, S. (1993). Lipid peroxidation: its mechanis., measurement and significance. American Journal of Clinical Nutrition 57, Suppl., 715S725S.Google Scholar
Jenkins, J. E. & Medeiros, D. M. (1993). Diets containing corn oi., coconut oil and cholesterol alter ventricular hypertroph., dilatation and function of hearts of rats fed copper-deficient diets. Journal of Nutrition 123, 11501160.Google Scholar
Jenkinson, S. G., Lawrence, R. A., Grafton, W. D., Gregory, P. E. & McKinney, M. A. (1984). Enhanced pulmonary toxicity in copper-deficient rats exposed to hyperoxia. Fundamentals of Applied Toxicology 4, 170177.CrossRefGoogle ScholarPubMed
Johnson, M. A., Fischer, J. G. & Kays, S. E. (1992). Is copper an antioxidant nutrient? Critical Reviews in Food Science and Nutrition 32, 131.Google Scholar
Johnson, W. T. & Saari, J. T. (1989). Dietary supplementation with t-butylhydroquinone reduces cardiac hypertrophy and anemia associated with copper deficiency in rats. Nutrition Research 9, 13551362.Google Scholar
Kato, N., Saari, J. T. & Schelkoph, G. M. (1994). Cystine feeding enhances defects of dietary copper deficiency by a mechanism not involving oxidative stress. Journal of Nutritional Biochemistry 5, 99105.Google Scholar
Kim, S., Chao, P. Y. & Allen, K. G. D. (1992). Inhibition of elevated hepatic glutathione abolishes copper deficiency cholesterolemia. FASEB Journal 6, 24672471.Google Scholar
Kinsman, G. D., Howard, A. N., Stone, D. L. & Mullins, P. A. (1990). Studies in copper status and atherosclerosis. Biochemical Society Transactions 18, 11861188.Google Scholar
Kletzien, R. F., Harris, P. K. W. & Foellmi, L. A. (1994). Glucose-6-phosphate dehydrogenase: a ‘housekeeping’ enzyme subject to tissue-specific regulation by hormone., nutrients, and oxidant stress. FASEB Journal 8, 174181.Google Scholar
Klevay, L. M. (1973). Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested. American Journal of Clinical Nutrition 26, 10601068.Google Scholar
Klevay, L. M. (1985). Atrial thrombosi., abnormal electrogram and sudden death in mice due to copper deficiency. Atherosclerosis 54, 213224.Google Scholar
Klevay, L. M. (1987). Hypertension in rats due to copper deficiency. Nutrition Reports International 35, 9991005.Google Scholar
Klevay, L. M. (1990 a). Ischemic heart disease as copper deficiency. In Copper Bioavailability and Metabolism, pp. 197208 [Kies, C., editor]. New York: Plenum Publishing Corporation.Google Scholar
Klevay, L. M. (1990 b). Ischemic heart disease: towards a unified theory. In Role of Copper in Lipid Metabolism, pp. 233267 [Lei, K. Y. and Carr, T. P., editors]. Boca Raton: CRC Press.Google Scholar
Klevay, L. M. (1992). Re: ‘Serum copper and the risk of acute myocardial infarction: a prospective population study in men in eastern Finland’ (Letter). American Journal of Epidemiology 135, 832833.Google Scholar
Klevay, L. M. (1993). Ischaemic heart disease: nutrition or pharmacotherapy. Journal of Trace Elements and Electrolytes in Health and Disease 7, 6369.Google Scholar
Klevay, L. M., Inman, L., Johnson, L. K., Lawler, H., Mahalko, J. R., Milne, D. B., Lukaski, H. C., Bolonchick, W. & Sendstead, H. H. (1984). Increased cholesterol in plasma in a young man during experimental copper depletion. Metabolism 33, 11121118.Google Scholar
Klevay, L. M. & Moore, R. J. (1990). Beer mitigates some effects of copper deficiency in rats. American Journal of Clinical Nutrition 51, 869872.Google Scholar
Kok, F. J., Van Duiyn, M., Hofman, A., Van der Voet, G. B., De Wolff, F. A., Paays, C. H. Ch. & Valkenburg, H. A. (1988). Serum copper and zinc and the risk of death from cancer and cardiovascular disease. American Journal of Epidemiology 128, 352359.CrossRefGoogle ScholarPubMed
Krsek-Staples, J. A. & Webester, R. O. (1993). Ceruloplasmin inhibits carbonyl formation in endogenous cell proteins. Free Radical Biology and Medicine 14, 115125.Google Scholar
Lai, C.-C., Huang, W.-H., Askari, A., Klevay, L. M. & Chiu, T. H. (1994 a). Regulation of catalase (CAT) and glutathione peroxidase (GSPX) in copper-deficient rat liver and heart. FASEB Journal 8, A677.Google Scholar
Lai, C.-C., Huang, W.-H., Askari, A., Wang, Y., Sarvazyan, N., Klevay, L. M. & Chiu, T. H. (1994 b). Differential regulation of superoxide dismutase in copper-deficient rat organs. Free Radical Biology and Medicine 16, 613620.Google Scholar
Lands, W. E. M., Kulmaez, R. J. & Marshall, P. J. (1984). Lipid peroxide actions in the regulation of prostaglandin synthesis. In Free Radicals in Biology, vol. 4., pp. 3963 [Pryor, W. A., editor]. New York: Academic Press.Google Scholar
Lawrence, R. A. & Jenkinson, S. G. (1987). Effects of copper deficiency on carbon tetrachloride-induced lipid peroxidation. Journal of Laboratory and Clinical Medicine 109, 134140.Google Scholar
Levander, O. A. (1990). Fruit and vegetable contribution to dietary mineral intake in human health and disease. Horticultural Science 25, 14861488.Google Scholar
Lewis, C. G., Fields, M., Burns, W. A. & Lure, M. D. (1993). Effect of coenzyme Q10 supplementation on cardiac hypertrophy of male rats consuming a high-fructos., low-copper diet. Biological Trace Element Research 37, 137149.CrossRefGoogle ScholarPubMed
Livingstone, M. B. E., Prentice, A. M., Strain, J. J., Coward, W. A., Black, A. E., Barker, M. E., McKenna, P. G. & Whitehead, R. G. (1990). Accuracy of weighed dietary records in studies of diet and health. British Medical Journal 300, 708712.Google Scholar
Lüscher, T. F. (1994). The endothelium and cardiovascular disease – a complex relation. New England Journal of Medicine 330, 10811083.Google Scholar
Lynch, S. M. & Frei, B. (1993). Mechanisms of copper- and iron-dependent oxidative modification of human low density lipoprotein. Journal of Lipid Research 34, 17451753.Google Scholar
Lynch, S. M. & Klevay, L. M. (1992). Effect of a dietary copper deficiency on plasma coagulation factor activities in male and female mice. Journal of Nutritional Biochemistry 3, 387391.Google Scholar
Lynch, S. M. & Klevay, L. M. (1993). Effect of a dietary copper deficiency on plasma fibrinolytic activity in male and female mice. Nutrition Research 13, 913922.Google Scholar
Lynch, S. M. & Strain, J. J. (1989). Effects of copper deficiency on hepatic and cardiac antioxidant enzyme activities in lactose- and sucrose-fed rats. British Journal of Nutrition 61, 345354.Google Scholar
Lynch, S. M. & Strain, J. J. (1990). Effects of skimmed milk powder., whey or casein on tissue trace element status and antioxidant enzyme activities in rats fed control and copper-deficient diets. Nutrition Research 10, 449460.Google Scholar
Matz, J. M., Blake, M. J., Saari, J. T. & Bode, A. M. (1994). Dietary copper deficiency reduces heat shock protein expression in cardiovascular tissues. FASEB Journal 8, 97102.Google Scholar
Medeiros, D. M., Bagby, D., Ovecka, G. & McCormick, R. (1991 a). Myofibrilla., mitochondrial and valvular morphological alterations in cardiac hypertrophy among copper deficient rats. Journal of Nutrition 121, 815825.Google Scholar
Medeiros, D. M., Davidson, J. & Jenkins, J. E. (1993). A unified perspective on copper deficiency and cardiomyopathy. Proceedings of the Society of Experimental Biology and Medicine 203, 262273.Google Scholar
Medeiros, D. M., Failla, M. L., Schoenemann, H. M. & Ovecka, G. D. (1991 b). Morphometric analysis of myocardium from copper-deficient pigs. Nutrition Research 11, 14391450.Google Scholar
Megaw, D. P., Allen, J. M. & Strain, J. J. (1992). Copper deficiency and endothelium dependent relaxations of rat aorta in vitro. Irish Journal of Medical Science 161, 646647.Google Scholar
Mertz, W. (1993). Essential trace metals: new definitions based on new paradigms. Nutrition Reviews 51, 287295.Google Scholar
Milne, D. M. & Nielsen, F. H. (1994). Effects of a short-term copper deprivation on postmenopausal women. FASEB Journal 8, A820.Google Scholar
Moncada, S., Gryglewski, R. J., Bunting, S. & Vane, J. R. (1976). Lipid peroxide inhibits enzyme in blood vessel microsomes that generates from prostaglandin endoperoxides substance (prostaglandin-X) which prevents platelet aggregation. Prostaglandins 12, 715738.Google Scholar
Nelson, S. K., Huang, C.-J., Mathias, M. M. & Allen, K. G. D. (1992). Copper-marginal and copper-deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activities and increase aortic lipid peroxidation in rats. Journal of Nutrition 122, 21012108.Google Scholar
O'Dell, B. L. (1981). Roles for iron and copper in connective tissue biosynthesis. Philosophical Transactions of the Royal Society of London Series B 294, 91104.Google Scholar
O'Dell, B. L. (1993). Fructose and mineral metabolism. American Journal of Clinical Nutrition 58, Suppl., 771S778S.Google Scholar
Okuma, M., Takayama, H. & Uchino, H. (1980). Generation of prostacyclin-like substance and lipid peroxidation in vitamin E-deficient rats. Prostaglandins 19, 527536.Google Scholar
Olin, K. L., Walter, R. M. & Keen, C. L. (1994). Copper deficiency affects selenoglutathione peroxidase and selenodeiodinase activities and antioxidant defense in weanling rats. American Journal of Clinical Nutrition 59, 654658.Google Scholar
Petering, H. G., Murthy, L., Stemmer, K. L., Finelli, V. N. & Menden, E. E. (1986). Effects of copper deficiency on the cardiovascular system of the rat: the role of dietary sucrose and excessive zinc. Biological Trace Element Research 9, 251270.Google Scholar
Prohaska, J. (1990). Biochemical changes in copper deficiency. Journal of Nutritional Biochemistry 1, 452461.Google Scholar
Prohaska, J. R. (1991). Changes in C., Zn-superoxide dismutas., cytochrome C oxidas., glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. Journal of Nutrition 121, 353363.Google Scholar
Prohaska, J. R., Sunde, R. A. & Zinn, K. R. (1992). Livers from copper-deficient rats have lower glutathione peroxidase activity and mRNA levels but normal liver selenium levels. Journal of Nutritional Biochemistry 3, 429436.Google Scholar
Rayssiguier, Y., Gueux, E., Bussiere, L. & Mazur, A. (1993). Copper deficiency increases the susceptibility of lipoproteins and tissues to peroxidation in rats. Journal of Nutrition 23, 13431348.Google Scholar
Reiser, K., McCormick, R. J. & Rucker, R. B. (1992). Enzymatic and nonenzymatic cross-linking of collagen and elastin. FASEB Journal 6, 24392449.Google Scholar
Reiser, S., Smith, J. C., Mertz, W., Hollbrook, J. T., Schofield, D. J., Powell, A. S., Camfield, W. K. & Conary, J. J. (1985). Indices of copper status in humans consuming a typical American diet containing either fructose or starch. American Journal of Clinical Nutrition 42, 242251.CrossRefGoogle ScholarPubMed
Reunanen, A., Knekt, P. & Aaran, R.-K. (1992). Serum ceruloplasmin level and the risk of myocardial infarction and stroke. American Journal of Epidemiology 136, 10821090.Google Scholar
Roitelman, J. & Schechter, I. (1981). Regulation of rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase. Journal of Biological Chemistry 259, 870877.Google Scholar
Rubanyi, G. M. & Vanhoutte, P. M. (1986). Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. American Journal of Physiology 250, H822H827.Google ScholarPubMed
Saari, J. T. (1992 a). Dietary copper deficiency and endothelium-dependent relaxation of rat aorta. Proceedings of the Society of Experimental Biology and Medicine 200, 1924.Google Scholar
Saari, J. T. (1992 b). Influence of long-term marginal copper deficiency on trace element status and cardiovascular variables in rats. Journal of Trace Elements in Experimental Medicine 5, 205214.Google Scholar
Saari, J. T., Dickerson, F. D. & Habib, M. P. (1990). Ethane production in copper-deficient rats. Proceedings of the Society for Experimental Biology and Medicine 195, 3033.Google Scholar
Saari, J. T., Reeves, P. G., Noordewier, B., Hall, C. B. & Lukaski, H. C. (1990). Cardiovascular but not renal effects of copper deficiency are inhibited by dimethyl sulphoxide. Nutrition Research 10, 467477.Google Scholar
Salonen, J. T., Salonen, R., Korpela, H., Suntioinen, S. & Tuomileho, J. (1991 a). Serum copper and the risks of acute myocardial infarction: a prospective population study in men in eastern Finland. American Journal of Epidemiology 134, 268276.Google Scholar
Salonen, J. T., Salonen, R., Seppären, K., Kantola, M., Suntioinen, S. & Korpela, H. (1991 b). Interactions of serum coppe., selenium, and low density lipoprotein cholesterol in atherogenesis. British Journal of Medicine 302, 756760.Google Scholar
Schoene, N. W., Morris, V. C. & Levander, O. A. (1986). Altered arachidonic acid metabolism in platelets and aortas from selenium-deficient rats. Nutrition Research 6, 7583.Google Scholar
Schofield, D. J., Reiser, S., Fields, M., Steele, N. C., Smith, J. C., Darcey, S. & Ono, K. (1990). Dietary coppe., simple sugar., and metabolic changes in pigs. Journal of Nutritional Biochemistry 1, 362368.Google Scholar
Schuschke, D. A., Reed, M. W. R., Saari, J. T. & Miller, F. N. (1992). Copper deficiency alters vasodilation in the rat cremaster muscle microcirculation. Journal of Nutrition 122, 15471552.Google Scholar
Seidel, K. E., Failla, M. L. & Rosebrough, R. W. (1991). Cardiac catecholamine metabolism in copper-deficient rats. Journal of Nutrition 121, 474483.Google Scholar
Shimaoka, I., Kodama, J., Nishino, K. & Itokawa, Y. (1993). Purification of a copper binding peptide from the mushroom Grifola frondosa and its effect on copper absorption. Journal of Nutritional Biochemistry 4, 3338.Google Scholar
Silverman, S., Fields, M. & Lewis, C. (1990). The effect of vitamin E on lipid peroxidation in the copper-deficient rat. Journal of Nutritional Biochemistry 1, 98101.Google Scholar
Sorenson, J. R. J. (1989). Copper complexes offer a physiological approach to treatment of chronic diseases. In Progress in Medical Chemistry, pp. 437568 [Ellis, G. P. and West, G. B., editors]. New York: Elsevier.Google Scholar
Steinberg, D., Parthasarathy, S., Carew, T. E., Khoo, J. C. & Witztum, J. L. (1989). Beyond cholesterol. Modification of low-density lipoprotein that increases its atherogenicity. New England Journal of Medicine 320, 915924.Google Scholar
Strain, J. J., Hannigan, B. M. & McKenna, P. G. (1991). The pathophysiology of oxidant damage. Journal of Biomedical Sciences 2, 1924.Google Scholar
Strauer, B.-E. (1979). Ventricular function and coronary hemodynamics in hypertensive heart disease. American Journal of Cardiology 44, 9991006.Google Scholar
Turnland, J. R. (1988). Copper nutriture bioavailability and the influence of dietary factors. Journal of American Dietetic Association 42, 242251.Google Scholar
Vadlamudi, R. K., McCormick, R. J., Medeiros, D. M., Vossoughi, J. & Failla, M. L. (1993). Copper deficiency alters collagen types and covalent cross-linking in swine myocardium and cardiac valves. American Journal of Physiology 264, H2154H2161.Google ScholarPubMed
Wapnir, R. A., Devas, G. & Solars, C. V. (1993). Inhibition of intestinal copper absorption by divalent cations and low-molecular-weight ligands in the rat. Biological Trace Element Research 36, 291305.Google Scholar
White, A. C., Thannickal, V. J. & Fanburg, B. L. (1994). Glutathione deficiency in human disease. Journal of Nutritional Biochemistry 5, 218226.Google Scholar
Yarze, J. C., Martin, P., Munoz, S. J. & Friedman, L. S. (1992). Wilson's disease: current status. American Journal of Medicine 92, 643654.Google Scholar
Yount, N. Y., McNamara, D. J., Al-Othman, A. A. & Lei, K. Y. (1990). The effect of copper deficiency on rat hepatic 3-hydroxy-3-methylglutaryl co-enzyme A reductase activity. Journal of Nutritional Biochemistry 1, 2733.Google Scholar
Ziegler, D. M. (1985). Role of reversible oxidation-reduction of enzyme thiols – disulfides in metabolic regulation. Annual Review of Biochemistry 54, 305329.CrossRefGoogle ScholarPubMed