Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T09:19:33.318Z Has data issue: false hasContentIssue false

Nuclear magnetic resonance spectroscopy as a tool to study carbohydrate metabolism

Published online by Cambridge University Press:  03 August 2018

Peter G. Morris
Affiliation:
Magnetic Resonance Centre, Department of Physics, University of Nottingham, Nottingham NG7 2RD
Dominick J. O. McIntyre
Affiliation:
Magnetic Resonance Centre, Department of Physics, University of Nottingham, Nottingham NG7 2RD
Ron Coxon
Affiliation:
Magnetic Resonance Centre, Department of Physics, University of Nottingham, Nottingham NG7 2RD
Herman S. Bachelard
Affiliation:
Magnetic Resonance Centre, Department of Physics, University of Nottingham, Nottingham NG7 2RD
And K. Tim Moriarty
Affiliation:
Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH
Paul L. Greenhaff
Affiliation:
Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH
Ian A. MacDonald
Affiliation:
Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Energy and Protein Metabolism Group Workshop on ‘Application of stable isotopes to nutritional metabolism’
Copyright
Copyright © The Nutrition Society 1994

References

Alger, J. R., Sillerud, L. O., Behar, K. L., Gillies, R. J., Shulman, R. G., Gordon, R. E., Shaw, D. & Hanley, P. E. (1981). In vivo carbon-13 nuclear magnetic resonance studies of mammals. Science 214, 660-662.CrossRefGoogle ScholarPubMed
Badar-Goffer, R. S., Bachelard, H. S. & Morris, P. G. (1990). Cerebral metabolism of acetate and glucose studied by 13C NMR spectroscopy. Biochemical Journal 266, 133-139. Google Scholar
Badar-Goffer, R. S., Ben-Yoseph, O., Bachelard, H. S. & Morris, P. G. (1992). Neuronal-glial metabolism under depolarizing conditions: a 13C NMR study. Biochemical Journal 282, 225-230.Google Scholar
Behar, K. L., Petroff, O. A. C., Prichard, J. W., Alger, J. R. & Shulman, R. G. (1986). Detection of metabolites in rabbit brain by 13C NMR spectroscopy following administration of [l-13C]glucose. Magnetic Resonance in Medicine 3, 911-920.Google Scholar
Bendall, M. R., Pegg, D. T., Doddrell, D. M. & Field, J. (1981). NMR of protons coupled to 13C nuclei only. Journal of the American Chemical Society 103, 934-936.Google Scholar
Ben-Yoseph, O., Badar-Goffer, R. S., Morris, P. G. & Bachelard, H. S. (1993). Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C and 31P-NMR study. Biochemical Journal 291, 915-919.CrossRefGoogle Scholar
Bottomley, P. A. & Smith, L. S. (1986). Chronic adult cerebral infarction studied by phosphorus NMR spectroscopy. Radiology 160, 763-766.CrossRefGoogle ScholarPubMed
Bruhn, H., Michaelis, T., Merboldt, K. D., Hanicke, W., Gyngell, M. L. & Frahm, J. (1991). Monitoring cerebral glucose in diabetics by proton MRS. Lancet 337, 745-746.Google Scholar
Cady, E. B., Costello, A. M. de L., Dawson, M. J., Delpy, D. T., Hope, P. L., Reynolds, E. D. R., Tofts, P. S. & Wilkie, D. R. (1983). Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet i, 1059-1062.CrossRefGoogle Scholar
Chance, B., Eleff, S., Bank, W., Leigh, J.S. Jr., & Warnell, R. (1982). 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proceedings of the National Academy of Sciences, USA 79, 7714-7718.CrossRefGoogle ScholarPubMed
Chen, W., Rothman, D. L. & Shulman, R. G. (1992). Sensitivity and resolution improvements of POCE technique. Proceedings of the 11th Annual Meeting of the Society of Magnetic Resonance in Medicine, 3833 Abstr.Google Scholar
Cohen, S. M., Ogawa, S. & Shulman, R. G. (1979). 13C NMR studies of gluconeogenesis in rat liver cells: Utilization of labelled glycerol by cells from euthyroid and hyperthyroid rats. Proceedings of the National Academy of Sciences, USA 76, 1603-1607.Google Scholar
den Hollander, J. A., Brown, T. R., Ugurbil, K. & Shulman, R. G. (1979). l3C nuclear magnetic resonance studies of anaerobic glycolysis in suspensions of yeast cells. Proceedings of the National Academy of Sciences, USA 76, 6096-6100.Google Scholar
Fitzpatrick, S. M., Hetherington, H. P., Behar, K. L. & Shulman, R. G. (1990). The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. Journal of Cerebral Blood Flow and Metabolism 10, 170-179.CrossRefGoogle ScholarPubMed
Freeman, R., Mareci, T. H. & Morris, G. A. (1981). Weak satellite signals in high resolution NMR spectra: separating the wheat from the chaff. Journal of Magnetic Resonance 42, 341-345.Google Scholar
Gadian, D. G. (1982). Nuclear Magnetic Resonance and its Application to Living Systems. Oxford: Clarendon Press.Google Scholar
Gruetter, R. & Boesch, C. (1992). Fast, noniterative shimming of spatially localized signals. In vivo analysis of the magnetic field along axes. Journal of Magnetic Resonance 96, 323-334.Google Scholar
Gruetter, R., Novotny, E. J., Boulware, S. D., Rothman, D. L., Mason, G. F., Shulman, G. I., Shulman, R. G. & Tamborlane, W. V. (1992a). Direct measurement of brain glucose in humans by 13C NMR spectroscopy. Proceedings of the National Academy of Sciences, USA 89, 1109-1112.CrossRefGoogle Scholar
Gruetter, R., Novotny, E. J., Boulware, S. D., Rothman, D. L., Tamborlane, W. V. & Shulman, R. G. (1992b). Localized 13C NMR of amino acids in the human brain in vivo. Society of Magnetic Resonance in Medicine, 1921 Abstr.Google Scholar
Hoult, D. I., Busby, S. J. W., Gadian, D. G., Radda, G. K., Richards, R. E. & Seeley, P. J. (1974). Observation of tissue metabolites using 31P nuclear magnetic resonance. Nature 274, 285-287.Google Scholar
Morris, P. G., Bachelard, H. S., Cox, D. W. G. & Cooper, J. C. (1986). 13C nuclear magnetic resonance studies of glucose metabolism in guinea-pig brain slices. Biochemical Society Transactions 14, 1270-1271.Google Scholar
Radda, G. K. (1986). The use of NMR spectroscopy for the understanding of disease. Science 233, 640-645.Google Scholar
Shulman, G. I., Rothman, D. L. & Shulman, R. G. (1990). 13C NMR studies of glucose disposal in normal and non-insulin-dependent diabetic humans. Philosophical Transactions of the Royal Society A 333, 525-529.Google Scholar
Stevens, A. N., Iles, R. A., Morris, P. G. & Griffiths, J. R. (1982). Detection of glycogenin glycogen storage disease by 13C NMR. FEBS Letters 150, 489-493.CrossRefGoogle Scholar
van Zijl, P. C. M., Chesnick, A. S., Moonen, C. T. W., Ruiz-Cabello, J. & van Gelderen, P. (1992). In vivo detection of [l-13C]glucose and its metabolic products with proton sensitivity. Society of Magnetic Resonance in Medicine, 544 AbstrGoogle Scholar