Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T19:20:20.571Z Has data issue: false hasContentIssue false

The use of stable isotopes and mass spectrometry in studying lipid metabolism

Published online by Cambridge University Press:  03 August 2018

Michel Beylot*
Affiliation:
INSERM U. 197, Faculté de Médecine Alexis Carrel, rue G. Paradin, 69372 Lyon Cédex 08BT9 5PX, France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Energy and Protein Metabolism Group Workshop on ‘Application of stable isotopes to nutritional metabolism’
Copyright
Copyright © The Nutrition Society 1994

References

Beylot, M., Beaufrère, B. & Riou, J. P. (1987a). Effect of epinephrine on the relationship between non esterified fatty acid availability and ketone body production in post-absorptive man: evidence for a hepatic antiketogenic effect of epinephrine. Journal of Clinical Endocrinology and Metabolism 65, 914-921.Google Scholar
Beylot, M., Martin, C., Beaufrere, B., Riou, J. P. & Mornex, R. (19876). Determination of steady-state and non steady-state glycerol kinetics in humans using deuterium labeled tracer. Journal of Lipid Research 28, 414-422.CrossRefGoogle Scholar
Beylot, M., Martin, C., Laville, M., Riou, J. P., Cohen, R. & Mornex, R. (1991). Lipolytic and ketogenic fluxes in human hyperthyroidism. Journal of Clinical Endocrinology and Metabolism 73, 42-49.CrossRefGoogle ScholarPubMed
Bonadonna, R. C., Groop, L. C., Zych, K., Shank, M. & De Fronzo, R. A. (1990). Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans. American Journal of Physiology 259, E736-E750.Google ScholarPubMed
Bougneres, P. F. & Bier, D. M. (1982). Stable isotope dilution method for measurement of palmitate content and labeled palmitate tracer enrichment in microliter plasma samples. Journal of Lipid Research 23, 502-507.Google Scholar
Bougnères, P. F., Karl, I. E., Hillman, L. S. & Bier, D. M. (1982). Lipid transport in the human newborn. Palmitate and glycerol turnover and the contribution to neonatal hepatic glucose output. Journal of Clinical Investigation 70, 268-276.Google Scholar
Cahill, G. F. (1976). Starvation in man. Journal of Clinical Endocrinology and Metabolism 5, 397-415.CrossRefGoogle Scholar
Clandini, M. T., Kheterpol, S., Kielo, E. S., Franck, M. H., Tokarsko, B. & Goh, Y. K. (1988). Chain shortening of palmitic acid in human subjects. American Journal of Clinical Nutrition 48, 587-591.Google Scholar
De Freitas, A. S. W. & Depocas, F. (1970). Glyceride-glycerol release and the interconversion of glucose and glycerol in normal and fasted rats. Canadian Journal of Physiology and Pharmacology 48, 561-568.CrossRefGoogle ScholarPubMed
Eaton, R. P., Berman, M. & Steinberg, D. (1969). Kinetic studies of plasma free fatty and acid triglyceride metabolism in man. Journal of Clinical Investigation 48, 1560-1579.Google Scholar
Emken, E. A., Arlof, R. O., Hachey, D. L., Garza, C, Thomas, M. R. & Brown-Booth, L. (1989). Incorporation of deuterium labeled fatty acids into human milk, plasma, and lipoprotein phospholipids and cholesteryl esters. Journal of Lipid Research 30, 395-402.Google Scholar
Fasching, P., Ratheiser, K., Waldhausl, W., Romac, M., Osterrude, W., Nowotny, P. & Vierhapper, M. (1991). Metabolic effects of fish oil supplementation in patients with impaired glucose tolerance. Diabetes 40, 538-589.Google Scholar
Goodenough, R. A. & Wolfe, R. R. (1983). A model for isotopic sampling and administration in constant infusion experiments: a test with 13C palmitate. American Journal of Clinical Nutrition 37, 1004-1009.Google Scholar
Goodman, K. J. & Brenna, J. Th. (1992). High sensitivity tracer detection using high precision gas chromatography-combustion isotope ratio mass spectrometry and highly enriched [U-13C] labeled precursors. Analytical Chemistry 64, 1088-1095.CrossRefGoogle ScholarPubMed
Gordon, G. W. (1980). Complex lipids. In Biochemical Applications of Mass Spectrometry, 1st supplementary vol., pp. 173-209 [Waller, G. R. and Dermer, O. C., editors]. New York, Chichester, Brisbane, Toronto: J. Wiley and Sons.Google Scholar
Groop, L. C., Bonadonna, R. C., Shank, M., Petrimes, S. & De Fronzo, R. P. (1991). Role of free fatty acids and insulin in determining free fatty acid and lipid oxidation in man. Journal of Clinical Investigation 87, 83-89.Google Scholar
Hachey, D. L., Thomas, M. R., Emken, E. A., Garza, C., Brown-Booth, L., Dalof, R. O. & Klein, P. A. (1987). Human lactation: maternal transfer of dietary triglycerides labeled with stable isotopes. Journal of Lipid Research 28, 1185-1192.CrossRefGoogle ScholarPubMed
Hagenfeldt, L. (1975). Turnover of individual free fatty acids in man. Federation Proceedings 34, 2246-2249.Google Scholar
Halliday, D., Venkatesan, S. & Pacy, P. (1993). Apolipoprotein metabolism: a stable-isotope approach. American Journal of Clinical Nutrition 57, Suppl., 7265-7315.Google Scholar
Heiling, V. J., Miles, J. M. & Jensen, M. D. (1991). How valid are isotopic measurements of fatty acid oxidation? American Journal of Physiology 261, E572-E577.Google Scholar
Hellerstein, M. K., Christiansen, A., Kaempfer, S., Kletke, C., Wu, H., Reio, J. S., Mulligan, K., Hellerstein, N. S. & Shackleton, C. H. L. (1991a). Measurement of de novo hepatic lipogenesis in humans using stable isotopes. Journal of Clinical Investigation 87, 1841-1852.Google Scholar
Hellerstein, M. K., Kletke, C., Kaempfer, S., Wu, K. & Shackleton, C. H. L. (19916). Use of mass isotopomer distributions in secreted lipids to sample lipogenic acetyl CoA pool in humans. American Journal of Physiology 261, E479-E486.Google Scholar
Jones, P. J. H. & Schoeller, D. A. (1990). Evidence for diurnal periodicity in human cholesterol synthesis. Journal of Lipid Research 31, 667-673.Google Scholar
Kharroubi, A. T., Masterson, T. M., Aloaghlas, T. A., Kennedy, K. A. & Kellemer, J. K. (1992). Isotopomer spectral analysis of triglyceride fatty acid synthesis in 3T3 cells. American Journal of Physiology 263, E667-E675.Google Scholar
Klein, S. & Wolfe, R. (1987). The use of isotopic tracers in studying lipid metabolism in human subjects. In Bailliere's Clinical Endocrinology and Metabolism, pp. 797-816. London: Bailliere Tindall.Google Scholar
Layman, D. K. & Wolfe, R. R. (1987). Sample site relation for tracer studies applying a undirectional circulatory approach. American Journal of Physiology 253, E173-E178.Google Scholar
Leitch, C. & Jones, P. J. H. (1993). Measurement of human lipogenesis using deuterium incorporation. Journal of Lipid Research 34, 157-163.Google Scholar
Metges, C. C. & Wolfram, G. (1991). Medium and long chain triglycerides labeled with 13C: a comparison of oxidation after oral or parenteral administration in humans. Journal of Nutrition 121, 31-36.Google Scholar
Miles, J. M., Ellman, M. G., McLean, K. L. & Jensen, M. A. (1987). Validation of a new method for determination of free fatty acid turnover. American Journal of Physiology 252, E431-E438.Google Scholar
Murphy, R. C. (1993). Mass spectrometry of lipids. In Handbook of Lipid Research, vol. 7 [Snyder, F., editor]. New York and London: Plenum Press.Google Scholar
Neese, R. A., Faix, D., Kletke, C., Wu, K., Wang, A. C., Shackleton, C. H. L. & Hellerstein, M. K. (1993). Measurement of endogenous synthesis of plasma cholesterol in rats and humans using MIDA. American Journal of Physiology 264, E136-E147.Google Scholar
Rittenberg, D. & Schoenheimer, B. (1937). Deuterium as an indicator in the study of intermediary metabolism. XL Further studies on the biological uptake of deuterium into organic substances with special references to fat and cholesterol formation. Journal of Biological Chemistry 121, 235-253.CrossRefGoogle Scholar
Romijn, J. A., Klein, S., Coyle, E. F., Sidossis, L. S. & Wolfe, R. R. (1993). Strenuous endurance training increases lipolysis and triglyceride fatty acid cycling at rest. Journal of Applied Physiology 75, 108-113.CrossRefGoogle ScholarPubMed
Rustan, A. C., Hustvedt, B. E. & Drevon, C. A. (1993). Dietary supplementation of very long chain A-3 fatty acids decreases whole body lipid utilization in the rat. Journal of Lipid Research 34, 1299-1309.Google Scholar
Sacca, L., Toffolo, G. & Cobelli, C. (1992). Va-A and A-V modes in whole body and regional kinetics: domain of validity from a physiological model. American Journal of Physiology 263, E597-E606.Google Scholar
Spitzer, J. J. (1975). Application of tracers in studying free fatty acid metabolism of various organs in vivo. Federation Proceedings 34, 2242-2245.Google Scholar
Storlien, L. H., Jenkins, A. B., Chisholm, D. J., Pascoe, W. S., Khouri, S. & Kraegen, E. W. (1991). Influence of dietary fat composition on development of influence resistance in rats. Diabetes 40, 280-289.CrossRefGoogle ScholarPubMed
Vantrapen, G. R., Rutgeerts, J., Ghoos, Y. F. & Ihele, M. J. (1989). Mixed triglyceride breath test: a non invasive test of pancreatic lipase activity in the duodenum. Gastroenterology 96, 1126-1134.Google Scholar
Watkins, J. B., Klein, P. D., Schoeller, D. A., Kirscher, B. S., Park, R. & Perman, J. A. (1982). Diagnosis and differentiation of fat malabsorption in children using 13C labeled lipids: trioctanoin, triolein and palmitic acid breath test. Gastroenterology 82, 911-917.CrossRefGoogle Scholar
Wolfe, B. M., Kane, J. P., Havel, R. J. & Brewster, M. P. (1973). Mechanism of the hypolipemic effect of clofibrate in post-absorptive man. Journal of Clinical Investigation 52, 2146-2159.CrossRefGoogle Scholar
Wolfe, R. R. & Durkot, M. J. (1985). Role of VLDL in the energy metabolism of the rat. Journal of Lipid Research 26, 210-217.CrossRefGoogle ScholarPubMed
Wolfe, R. R., Evans, J. E. & Mullany, C. J. (1980). Measurement of plasma free fatty acid turnover and oxidation using [1-13C] palmitic acid. Biomedical Mass Spectrometry 7, 168-171.Google Scholar
Wolfe, R. R., Hernoon, D. N., Jahoor, F., Miyoshi, H. & Wolfe, M. (19876). Effect of severe burn injury on substrate cycling by glucose and fatty acids. New England Journal of Medicine 317, 403-408.Google Scholar
Wolfe, R. R. & Jahoor, F. (1990). Recovery of labeled CO2 during the infusion of C-l vs C-2 labeled acetate: implications of tracer studies of substrate oxidation. American Journal of Clinical Nutrition 51, 248-252.Google Scholar
Wolfe, R. R. & Peters, E. J. (1987). Lipolytic response to glucose infusion in human subjects. American Journal of Physiology 252, E218-E223.Google Scholar
Wolfe, R. R., Peters, E. J., Klein, S., Holland, O. B., Rosenblatt, J. & Garry, H. J. (1987a). Effect of short term fasting on lipolytic responsiveness in normal and obese human subjects. American Journal of Physiology 252, E189-E196.Google Scholar
Wolfe, R. R., Shaw, J. H. F. & Durkot, M. J. (1985). Effect of sepsis on VLDL kinetics: responses in basal state and during infusion. American Journal of Physiology 248, E732-E740.Google Scholar
Zhang, Y., Agarwal, K. C., Beylot, M., Soloviev, M. V., David, F., Reider, M., Tserng, K. Y. & Brunengraber, H. (1993). Assay of the acetyl CoA probe acetyl-sulfamethoxazole and of sulfamethoxazole by gas chromatography-mass spectrometry. Analytical Biochemistry 212, 481-486.Google Scholar