We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/astro.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The low-frequency linearly polarised radio source population is largely unexplored. However, a renaissance in low-frequency polarimetry has been enabled by pathfinder and precursor instruments for the Square Kilometre Array. In this second paper from the POlarised GaLactic and Extragalactic All-Sky MWA Survey-the POlarised GLEAM Survey, or POGS-we present the results from our all-sky MWA Phase I Faraday Rotation Measure survey. Our survey covers nearly the entire Southern sky in the Declination range $-82^\circ$ to $+30^\circ$ at a resolution between around three and seven arcminutes (depending on Declination) using data in the frequency range 169−231 MHz. We have performed two targeted searches: the first covering 25 489 square degrees of sky, searching for extragalactic polarised sources; the second covering the entire sky South of Declination $+30^\circ$, searching for known pulsars. We detect a total of 517 sources with 200 MHz linearly polarised flux densities between 9.9 mJy and 1.7 Jy, of which 33 are known radio pulsars. All sources in our catalogues have Faraday rotation measures in the range $-328.07$ to $+279.62$ rad m−2. The Faraday rotation measures are broadly consistent with results from higher-frequency surveys, but with typically more than an order of magnitude improvement in the precision, highlighting the power of low-frequency polarisation surveys to accurately study Galactic and extragalactic magnetic fields. We discuss the properties of our extragalactic and known-pulsar source population, how the sky distribution relates to Galactic features, and identify a handful of new pulsar candidates among our nominally extragalactic source population.
We compare first-order (refractive) ionospheric effects seen by the MWA with the ionosphere as inferred from GPS data. The first-order ionosphere manifests itself as a bulk position shift of the observed sources across an MWA field of view. These effects can be computed from global ionosphere maps provided by GPS analysis centres, namely the CODE. However, for precision radio astronomy applications, data from local GPS networks needs to be incorporated into ionospheric modelling. For GPS observations, the ionospheric parameters are biased by GPS receiver instrument delays, among other effects, also known as receiver DCBs. The receiver DCBs need to be estimated for any non-CODE GPS station used for ionosphere modelling. In this work, single GPS station-based ionospheric modelling is performed at a time resolution of 10 min. Also the receiver DCBs are estimated for selected Geoscience Australia GPS receivers, located at Murchison Radio Observatory, Yarragadee, Mount Magnet and Wiluna. The ionospheric gradients estimated from GPS are compared with that inferred from MWA. The ionospheric gradients at all the GPS stations show a correlation with the gradients observed with the MWA. The ionosphere estimates obtained using GPS measurements show promise in terms of providing calibration information for the MWA.
We report on the detection of a giant radio halo in the cluster Abell 3404 as well as confirmation of the radio halo observed in Abell 141 (with linear extents $\sim\!770$ and $\sim\!850$ kpc, respectively). We use the Murchison Widefield Array, the Australian Square Kilometre Array Pathfinder, and the Australia Telescope Compact Array to characterise the emission and intervening radio sources from $\sim100$ to 1 000 MHz; power law models are fit to the spectral energy distributions with spectral indices $\alpha_{88}^{1\,110} = -1.66 \pm 0.07$ and $\alpha_{88}^{943} = -1.06 \pm 0.09$ for the radio halos in Abell 3404 and Abell 141, respectively. We find strong correlation between radio and X-ray surface brightness for Abell 3404 but little correlation for Abell 141. We note that each cluster has an atypical morphology for a radio-halo-hosting cluster, with Abell 141 having been previously reported to be in a pre-merging state, and Abell 3404 is largely relaxed with only minor evidence for a disturbed morphology. We find that the radio halo powers are consistent with the current radio halo sample and $P_\nu$–M scaling relations, but note that the radio halo in Abell 3404 is an ultra-steep–spectrum radio halo (USSRH) and, as with other USSRHs lies slightly below the best-fit $P_{1.4}$–M relation. We find that an updated scaling relation is consistent with previous results and shifting the frequency to 150 MHz does not significantly alter the best-fit relations with a sample of 86 radio halos. We suggest that the USSRH halo in Abell 3404 represents the faint class of radio halos that will be found in clusters undergoing weak mergers.
We estimate spatial gradients in the ionosphere using the Global Positioning System and GLONASS (Russian global navigation system) observations, utilising data from multiple Global Positioning System stations in the vicinity of Murchison Radio-astronomy Observatory. In previous work, the ionosphere was characterised using a single-station to model the ionosphere as a single layer of fixed height and this was compared with ionospheric data derived from radio astronomy observations obtained from the Murchison Widefield Array. Having made improvements to our data quality (via cycle slip detection and repair) and incorporating data from the GLONASS system, we now present a multi-station approach. These two developments significantly improve our modelling of the ionosphere. We also explore the effects of a variable-height model. We conclude that modelling the small-scale features in the ionosphere that have been observed with the MWA will require a much denser network of Global Navigation Satellite System stations than is currently available at the Murchison Radio-astronomy Observatory.
Significant new opportunities for astrophysics and cosmology have been identified at low radio frequencies. The Murchison Widefield Array is the first telescope in the southern hemisphere designed specifically to explore the low-frequency astronomical sky between 80 and 300 MHz with arcminute angular resolution and high survey efficiency. The telescope will enable new advances along four key science themes, including searching for redshifted 21-cm emission from the EoR in the early Universe; Galactic and extragalactic all-sky southern hemisphere surveys; time-domain astrophysics; and solar, heliospheric, and ionospheric science and space weather. The Murchison Widefield Array is located in Western Australia at the site of the planned Square Kilometre Array (SKA) low-band telescope and is the only low-frequency SKA precursor facility. In this paper, we review the performance properties of the Murchison Widefield Array and describe its primary scientific objectives.
We follow up on a report by Vacca et al. (2018) of 28 candidate large-scale diffuse synchrotron sources in an 8° × 8° area of the sky (centred at RA 5h0m0s; Dec 5°48ʹ00ʹʹ). These sources were originally observed at 1.4 GHz using a combination of the single-dish Sardinia Radio Telescope and archival NRAO VLA Sky Survey data. They are in an area with nine massive galaxy clusters at
$z \approx 0.1$
and are candidates for the first detection of filaments of the synchrotron cosmic web. We attempt to verify these candidate sources with lower frequency observations at 154 MHz with the Murchison Widefield Array and at 887 MHz with the Australian Square Kilometre Array Pathfinder (ASKAP). We use a novel technique to calculate the surface brightness sensitivity of these instruments to show that our lower frequency observations, and in particular those by ASKAP, are ideally suited to detect large-scale, extended synchrotron emission. Nonetheless, we are forced to conclude that none of these sources are likely to be synchrotron in origin or associated with the cosmic web.
The current generation of experiments aiming to detect the neutral hydrogen signal from the Epoch of Reionisation (EoR) is likely to be limited by systematic effects associated with removing foreground sources from target fields. In this paper, we develop a model for the compact foreground sources in one of the target fields of the MWA’s EoR key science experiment: the ‘EoR1’ field. The model is based on both the MWA’s GLEAM survey and GMRT 150 MHz data from the TGSS survey, the latter providing higher angular resolution and better astrometric accuracy for compact sources than is available from the MWA alone. The model contains 5 049 sources, some of which have complicated morphology in MWA data, Fornax A being the most complex. The higher resolution data show that 13% of sources that appear point-like to the MWA have complicated morphology such as double and quad structure, with a typical separation of 33 arcsec. We derive an analytic expression for the error introduced into the EoR two-dimensional power spectrum due to peeling close double sources as single point sources and show that for the measured source properties, the error in the power spectrum is confined to high k⊥ modes that do not affect the overall result for the large-scale cosmological signal of interest. The brightest 10 mis-modelled sources in the field contribute 90% of the power bias in the data, suggesting that it is most critical to improve the models of the brightest sources. With this hybrid model, we reprocess data from the EoR1 field and show a maximum of 8% improved calibration accuracy and a factor of two reduction in residual power in k-space from peeling these sources. Implications for future EoR experiments including the SKA are discussed in relation to the improvements obtained.
A new high time resolution observing mode for the Murchison Widefield Array (MWA) is described, enabling full polarimetric observations with up to
$30.72\,$
MHz of bandwidth and a time resolution of
${\sim}$
$0.8\,\upmu$
s. This mode makes use of a polyphase synthesis filter to ‘undo’ the polyphase analysis filter stage of the standard MWA’s Voltage Capture System observing mode. Sources of potential error in the reconstruction of the high time resolution data are identified and quantified, with the
$S/N$
loss induced by the back-to-back system not exceeding
$-0.65\,$
dB for typical noise-dominated samples. The system is further verified by observing three pulsars with known structure on microsecond timescales.
Following the results of our previous low-frequency searches for extraterrestrial intelligence (SETI) using the Murchison Widefield Array (MWA), directed towards the Galactic Centre and the Orion Molecular Cloud (Galactic Anticentre), we report a new large-scale survey towards the Vela region with the lowest upper limits thus far obtained with the MWA. Using the MWA in the frequency range 98–128 MHz over a 17-h period, a
$400\,\textrm{deg}^{2}$
field centred on the Vela Supernova Remnant was observed with a frequency resolution of 10 kHz. Within this field, there are six known exoplanets. At the positions of these exoplanets, we searched for narrow-band signals consistent with radio transmissions from intelligent civilisations. No unknown signals were found with a 5
$\sigma$
detection threshold. In total, across this work plus our two previous surveys, we have now examined 75 known exoplanets at low frequencies. In addition to the known exoplanets, we have included in our analysis the calculation of the Effective Isotropic Radiated Power (EIRP) upper limits towards over 10 million stellar sources in the Vela field with known distances from Gaia (assuming a 10-kHz transmission bandwidth). Using the methods of Wright, Kanodia, & Lubar (2018) to describe an eight-dimensional parameter space for SETI searches, our survey achieves the largest search fraction yet, two orders of magnitude higher than the previous highest (our MWA Galactic Anticentre survey), reaching a search fraction of
$\ \sim2\,{\times}\,10^{-16}$
. We also compare our results to previous SETI programs in the context of the
$\mbox{EIRP}_{\textrm{min}}$
—Transmitter Rate plane. Our results clearly continue to demonstrate that SETI has a long way to go. But, encouragingly, the MWA SETI surveys also demonstrate that large-scale SETI surveys, in particular for telescopes with a large field-of-view, can be performed commensally with observations designed primarily for astrophysical purposes.
We describe a new low-frequency wideband radio survey of the southern sky. Observations covering 72–231 MHz and Declinations south of
$+30^\circ$
have been performed with the Murchison Widefield Array “extended” Phase II configuration over 2018–2020 and will be processed to form data products including continuum and polarisation images and mosaics, multi-frequency catalogues, transient search data, and ionospheric measurements. From a pilot field described in this work, we publish an initial data release covering 1,447
$\mathrm{deg}^2$
over
$4\,\mathrm{h}\leq \mathrm{RA}\leq 13\,\mathrm{h}$
,
$-32.7^\circ \leq \mathrm{Dec} \leq -20.7^\circ$
. We process twenty frequency bands sampling 72–231 MHz, with a resolution of 2′–45′′, and produce a wideband source-finding image across 170–231 MHz with a root mean square noise of
$1.27\pm0.15\,\mathrm{mJy\,beam}^{-1}$
. Source-finding yields 78,967 components, of which 71,320 are fitted spectrally. The catalogue has a completeness of 98% at
${{\sim}}50\,\mathrm{mJy}$
, and a reliability of 98.2% at
$5\sigma$
rising to 99.7% at
$7\sigma$
. A catalogue is available from Vizier; images are made available via the PASA datastore, AAO Data Central, and SkyView. This is the first in a series of data releases from the GLEAM-X survey.
Diffuse, non-thermal emission in galaxy clusters is increasingly being detected in low-frequency radio surveys and images. We present a new diffuse, steep-spectrum, non-thermal radio source within the cluster Abell 1127 found in survey data from the Murchison Widefield Array (MWA). We perform follow-up observations with the ‘extended’ configuration MWA Phase II with improved resolution to better resolve the source and measure its low-frequency spectral properties. We use archival Very Large Array S-band data to remove the discrete source contribution from the MWA data, and from a power law model fit we find a spectral index of –1.83±0.29 broadly consistent with relic-type sources. The source is revealed by the Giant Metrewave Radio Telescope at 150 MHz to have an elongated morphology, with a projected linear size of 850 kpc as measured in the MWA data. Using Chandra observations, we derive morphological estimators and confirm quantitatively that the cluster is in a disturbed dynamical state, consistent with the majority of phoenices and relics being hosted by merging clusters. We discuss the implications of relying on morphology and low-resolution imaging alone for the classification of such sources and highlight the usefulness of the MHz to GHz radio spectrum in classifying these types of emission. Finally, we discuss the benefits and limitations of using the MWA Phase II in conjunction with other instruments for detailed studies of diffuse, steep-spectrum, non-thermal radio emission within galaxy clusters.
We present the first survey of radio frequency interference (RFI) at the future site of the low frequency Square Kilometre Array (SKA), the Murchison Radio-astronomy Observatory (MRO), that both temporally and spatially resolves the RFI. The survey is conducted in a 1 MHz frequency range within the FM band, designed to encompass the closest and strongest FM transmitters to the MRO (located in Geraldton, approximately 300 km distant). Conducted over approximately three days using the second iteration of the Engineering Development Array in an all-sky imaging mode, we find a range of RFI signals. We are able to categorise the signals into: those received directly from the transmitters, from their horizon locations; reflections from aircraft (occupying approximately 13% of the observation duration); reflections from objects in Earth orbit; and reflections from meteor ionisation trails. In total, we analyse 33 994 images at 7.92 s time resolution in both polarisations with angular resolution of approximately 3.5
$^{\circ}$
, detecting approximately forty thousand RFI events. This detailed breakdown of RFI in the MRO environment will enable future detailed analyses of the likely impacts of RFI on key science at low radio frequencies with the SKA.
We present techniques developed to calibrate and correct Murchison Widefield Array low-frequency (72–300 MHz) radio observations for polarimetry. The extremely wide field-of-view, excellent instantaneous (u, v)-coverage and sensitivity to degree-scale structure that the Murchison Widefield Array provides enable instrumental calibration, removal of instrumental artefacts, and correction for ionospheric Faraday rotation through imaging techniques. With the demonstrated polarimetric capabilities of the Murchison Widefield Array, we discuss future directions for polarimetric science at low frequencies to answer outstanding questions relating to polarised source counts, source depolarisation, pulsar science, low-mass stars, exoplanets, the nature of the interstellar and intergalactic media, and the solar environment.
We present the results of an approximately 6 100 deg2 104–196 MHz radio sky survey performed with the Murchison Widefield Array during instrument commissioning between 2012 September and 2012 December: the MWACS. The data were taken as meridian drift scans with two different 32-antenna sub-arrays that were available during the commissioning period. The survey covers approximately 20.5 h < RA < 8.5 h, − 58° < Dec < −14°over three frequency bands centred on 119, 150 and 180 MHz, with image resolutions of 6–3 arcmin. The catalogue has 3 arcmin angular resolution and a typical noise level of 40 mJy beam− 1, with reduced sensitivity near the field boundaries and bright sources. We describe the data reduction strategy, based upon mosaicked snapshots, flux density calibration, and source-finding method. We present a catalogue of flux density and spectral index measurements for 14 110 sources, extracted from the mosaic, 1 247 of which are sub-components of complexes of sources.
Precise instrumental calibration is of crucial importance to 21-cm cosmology experiments. The Murchison Widefield Array’s (MWA) Phase II compact configuration offers us opportunities for both redundant calibration and sky-based calibration algorithms; using the two in tandem is a potential approach to mitigate calibration errors caused by inaccurate sky models. The MWA Epoch of Reionization (EoR) experiment targets three patches of the sky (dubbed EoR0, EoR1, and EoR2) with deep observations. Previous work in Li et al. (2018) and (2019) studied the effect of tandem calibration on the EoR0 field and found that it yielded no significant improvement in the power spectrum (PS) over sky-based calibration alone. In this work, we apply similar techniques to the EoR1 field and find a distinct result: the improvements in the PS from tandem calibration are significant. To understand this result, we analyse both the calibration solutions themselves and the effects on the PS over three nights of EoR1 observations. We conclude that the presence of the bright radio galaxy Fornax A in EoR1 degrades the performance of sky-based calibration, which in turn enables redundant calibration to have a larger impact. These results suggest that redundant calibration can indeed mitigate some level of model incompleteness error.
We present a broadband radio study of the transient jets ejected from the black hole candidate X-ray binary MAXI J1535–571, which underwent a prolonged outburst beginning on 2017 September 2. We monitored MAXI J1535–571 with the Murchison Widefield Array (MWA) at frequencies from 119 to 186 MHz over six epochs from 2017 September 20 to 2017 October 14. The source was quasi-simultaneously observed over the frequency range 0.84–19 GHz by UTMOST (the Upgraded Molonglo Observatory Synthesis Telescope) the Australian Square Kilometre Array Pathfinder (ASKAP), the Australia Telescope Compact Array (ATCA), and the Australian Long Baseline Array (LBA). Using the LBA observations from 2017 September 23, we measured the source size to be
$34\pm1$
mas. During the brightest radio flare on 2017 September 21, the source was detected down to 119 MHz by the MWA, and the radio spectrum indicates a turnover between 250 and 500 MHz, which is most likely due to synchrotron self-absorption (SSA). By fitting the radio spectrum with a SSA model and using the LBA size measurement, we determined various physical parameters of the jet knot (identified in ATCA data), including the jet opening angle (
$\phi_{\rm op} = 4.5\pm1.2^{\circ}$
) and the magnetic field strength (
$B_{\rm s} = 104^{+80}_{-78}$
mG). Our fitted magnetic field strength agrees reasonably well with that inferred from the standard equipartition approach, suggesting the jet knot to be close to equipartition. Our study highlights the capabilities of the Australian suite of radio telescopes to jointly probe radio jets in black hole X-ray binaries via simultaneous observations over a broad frequency range, and with differing angular resolutions. This suite allows us to determine the physical properties of X-ray binary jets. Finally, our study emphasises the potential contributions that can be made by the low-frequency part of the Square Kilometre Array (SKA-Low) in the study of black hole X-ray binaries.
We previously reported a putative detection of a radio galaxy at
$z=10.15$
, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The redshift of this source, GLEAM J0917–0012, was based on three weakly detected molecular emission lines observed with the Atacama Large Millimetre Array (ALMA). In order to confirm this result, we conducted deep spectroscopic follow-up observations with ALMA and the Karl Jansky Very Large Array (VLA). The ALMA observations targeted the same CO lines previously reported in Band 3 (84–115 GHz) and the VLA targeted the CO(4-3) and [CI(1-0)] lines for an independent confirmation in Q-band (41 and 44 GHz). Neither observation detected any emission lines, removing support for our original interpretation. Adding publicly available optical data from the Hyper Suprime-Cam survey, Widefield Infrared Survey Explorer (WISE), and Herschel Space Observatory in the infrared, as well as
$<$
10 GHz polarisation and 162 MHz inter-planetary scintillation observations, we model the physical and observational characteristics of GLEAM J0917–0012 as a function of redshift. Comparing these predictions and observational relations to the data, we are able to constrain its nature and distance. We argue that if GLEAM J0917–0012 is at
$z<3,$
then it has an extremely unusual nature, and that the more likely solution is that the source lies above
$z=7$
.
Wepresent and evaluate several strategies to search for prompt, low-frequency radio emission associated with gravitational wave transients using the Murchison Widefield Array. As we are able to repoint the Murchison Widefield Array on timescales of tens of seconds, we can search for the dispersed radio signal that has been predicted to originate along with or shortly after a neutron star-neutron star merger. We find that given the large, 600 deg2 instantaneous field of view of the Murchison Widefield Array, we can cover a significant fraction of the predicted gravitational wave error region, although due to the complicated geometry of the latter, we only cover > 50% of the error region for approximately 5% of events, and roughly 15% of events will be located < 10° from the Murchison Widefield Array pointing centre such that they will be covered in the radio images. For optimal conditions, our limiting flux density for a 10-s long transient would be 0.1 Jy, increasing to about 1 Jy for a wider range of events. This corresponds to luminosity limits of 1038−39 erg s−1 based on expectations for the distances of the gravitational wave transients, which should be sufficient to detect or significantly constrain a range of models for prompt emission.
We have extended our previous work to use the Murchison widefield array (MWA) as a non-coherent passive radar system in the FM frequency band, using terrestrial FM transmitters to illuminate objects in low Earth orbit (LEO) and the MWA as the sensitive receiving element for the radar return. We have implemented a blind detection algorithm that searches for these reflected signals in difference images constructed using standard interferometric imaging techniques. From a large-scale survey using 20 h of archived MWA observations, we detect 74 unique objects over multiple passes, demonstrating the MWA to be a valuable addition to the global Space Domain Awareness network. We detected objects with ranges up to 977 km and as small as $0.03$${\rm m}^2$ radar cross section. We found that 30 objects were either non-operational satellites or upper-stage rocket body debris. Additionally, we also detected FM reflections from Geminid meteors and aircraft flying over the MWA. Most of the detections of objects in LEO were found to lie within the parameter space predicted by previous feasibility studies, verifying the performance of the MWA for this application. We have also used our survey to characterise these reflected signals from LEO objects as a source of radio frequency interference (RFI) that corrupts astronomical observations. This has allowed us to undertake an initial analysis of the impact of this RFI on the MWA and the future square kilometer array (SKA). As part of this analysis, we show that the standard MWA RFI flagging strategy misses most of this RFI and that this should be a careful consideration for the SKA.
Galaxy clusters have been found to host a range of diffuse, non-thermal emission components, generally with steep, power law spectra. In this work we report on the detection and follow-up of radio halos, relics, remnant radio galaxies, and other fossil radio plasmas in Southern Sky galaxy clusters using the Murchison Widefield Array and the Australian Square Kilometre Array Pathfinder. We make use of the frequency coverage between the two radio interferometers—from 88 to
$\sim\!900$
MHz—to characterise the integrated spectra of these sources within this frequency range. Highlights from the sample include the detection of a double relic system in Abell 3186, a mini-halo in RXC J0137.2–0912, a candidate halo and relic in Abell 3399, and a complex multi-episodic head-tail radio galaxy in Abell 3164. We compare this selection of sources and candidates to the literature sample, finding sources consistent with established radio power–cluster mass scaling relations. Finally, we use the low-frequency integrated spectral index,
$\alpha$
(
$S_v \propto v^\alpha$
), of the detected sample of cluster remnants and fossil sources to compare with samples of known halos, relics, remnants and fossils to investigate a possible link between their electron populations. We find the distributions of
$\alpha$
to be consistent with relic and halo emission generated by seed electrons that originated in fossil or remnant sources. However, the present sample sizes are insufficient to rule out other scenarios.