A box-diffusion model for the carbon cycle is used to estimate the magnitude of 14C variations caused by changes of reservoir sizes and exchange fluxes in the global carbon system. The influence of changes in atmospheric CO2 concentration, biomass, CO2 exchange rate between atmosphere and ocean, and ocean mixing is considered. Steady-state 14C concentrations as well as the transients are calculated. For changing biomass, atmospheric CO2 levels and 13C/12C ratios are also calculated.
Carbon-cycle-induced 14C variations may have been significant in the transition period from Glacial to Postglacial when drastic changes in environmental conditions took place within short time periods, while they were probably less important during the climatically more stable Postglacial.
Changes of the oceanic circulation, as supposedly occurred, are considered the most important factor, besides variations of the production rate, affecting the global distribution of 14C. 14C variations due to changes of the atmospheric CO2 level or the air-sea-exchange probably did not exceed one to a few percent. Fluctuations of the forest biomass, which may have occurred between Glacial and Postglacial, hardly affected the 14C concentration over a long term.
Responses of the atmospheric 14C concentration are also calculated for variations of the 14C production rate by cosmic radiation. The following cases are considered: a step change, square-wave changes producing “wiggles”, and sinusoidal variations.