Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T01:22:26.277Z Has data issue: false hasContentIssue false

Are both necessity and opportunity the mothers of innovations?

Published online by Cambridge University Press:  20 November 2019

Gili Greenbaum
Affiliation:
Department of Biology, Stanford University, Stanford, CA 94305gilig@stanford.eduhttps://giligreenbaum.wordpress.com/
Laurel Fogarty
Affiliation:
Department of Human Behavior, Ecology, and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germanylaurel_fogarty@eva.mpg.dehttps://www.eva.mpg.de/ecology/staff/laurel-fogarty/index.html
Heidi Colleran
Affiliation:
Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, Jena 07445, Germanycolleran@shh.mpg.dehttps://www.shh.mpg.de/person/48693/25522
Oded Berger-Tal
Affiliation:
Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israelbergerod@bgu.ac.ilhttp://odedbergertal.wixsite.com/conservationbehavior
Oren Kolodny
Affiliation:
Department of Biology, Stanford University, Stanford, CA 94305gilig@stanford.eduhttps://giligreenbaum.wordpress.com/ Department of Ecology, Evolution, and Behavior, Hebrew University of Jerusalem, Jerusalem 9190401, Israelorenkolodny@gmail.comhttps://sites.google.com/view/oren-kolodny-homepage
Nicole Creanza
Affiliation:
Department of Biological Sciences, Vanderbilt University, Nashville TN 37212. nicole.creanza@vanderbilt.eduhttp://creanzalab.com

Abstract

Baumard's perspective asserts that “opportunity is the mother of innovation,” in contrast to the adage ascribing this role to necessity. Drawing on behavioral ecology and cognition, we propose that both extremes – affluence and scarcity – can drive innovation. We suggest that the types of innovations at these two extremes differ and that both rely on mechanisms operating on different time scales.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, C., Nettle, D., Reichert, S., Bedford, T., Monaghan, P. & Bateson, M. (2018) A marker of biological ageing predicts adult risk preference in European starlings, Sturnus vulgaris. Behavioral Ecology 29(3):589–97.Google Scholar
Aplin, L. M., Farine, D. R., Morand-Ferrron, J., Cockburn, A., Thornton, A. & Sheldon, B. C. (2015) Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518(7540):538541.Google Scholar
Arbilly, M. & Laland, K. N. (2017) The magnitude of innovation and its evolution in social animals. Proceedings of the Royal Society B: Biological Sciences 284(1848):pii: 20162385. Available at: http://doi.org/10.1098/rspb.2016.2385.Google Scholar
Bateson, M., Brilot, B. O., Gillespie, R., Monaghan, P. & Nettle, D. (2015) Developmental telomere attrition predicts impulsive decision-making in adult starlings. Proceedings of the Royal Society of London B: Biological Sciences 282(1799):20142140.Google Scholar
Benson-Amram, S. & Holekamp, K. E. (2012) Innovative problem solving by wild spotted hyenas. Proceedings of the Royal Society B: Biological Sciences 279(1744):40874095.Google Scholar
Berger-Tal, O., Nathan, J., Meron, E. & Saltz, D. (2014) The exploration-exploitation dilemma: A multidisciplinary framework. PLoS One 9(4):e95693.Google Scholar
Bokony, V, LendvaiA, Z. A, Z., Csongor, I., Vágási, C. I., Pǎtraş, L., Pap, P. L., Németh, J., Vincze, E., Papp, S., Preiszner, B., Seress, G. & Likér, A. (2013) Necessity or capacity? Physiological state predicts problem-solving performance in house sparrows. Behavioral Ecology 25(1):124–35.Google Scholar
Boogert, N. J., Zimmer, C. & Spencer, K. A. (2013) Pre- and post-natal stress have opposing effects on social information use. Biology Letters 9(2):20121088.Google Scholar
Boserup, E. (1965) The conditions of agricultural growth: The economics of agrarian change under population pressure. Allen & Unwin.Google Scholar
Caraco, T. (1981) Risk-Sensitivity and foraging groups. Ecology 62(3):527531.Google Scholar
Carja, O. & Creanza, N. (2019) The evolutionary advantage of cultural memory on heterogeneous contact networks. Theoretical Population Biology 129:118–25. Available at: http://doi.org/10.1101/466524.Google Scholar
Colleran, H., Jasienska, G., Nenko, I., Galbarczyk, A. & Mace, R. (2015) Fertility decline and the changing dynamics of wealth, status and inequality. Proceedings of the Royal Society B: Biological Sciences 282(1806):20150287.Google Scholar
Creanza, N., Kolodny, O. & Feldman, M. W. (2017) Greater than the sum of its parts? Modelling population contact and interaction of cultural repertoires. Journal of the Royal Society Interface 14(130):20170171.Google Scholar
Crino, O. L., Driscoll, S. C., Ton, R. & Breuner, C. W. (2014) Corticosterone exposure during development improves performance on a novel foraging task in zebra finches. Animal Behaviour 91:2732.Google Scholar
Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B. & Laland, K. N. (2012) Identification of the social and cognitive processes underlying human cumulative culture. Science 335(6072):1114–18.Google Scholar
Derex, M. & Boyd, R. (2016) Partial connectivity increases cultural accumulation within groups. Proceedings of the National Academy of Sciences USA 113(11):2982–87. Available at: https://doi.org/10.1073/pnas.1518798113.Google Scholar
Derex, M., Perreault, C. & Boyd, R. (2018) Divide and conquer: Intermediate levels of population fragmentation maximize cultural accumulation. Philosophical Transactions of the Royal Society B: Biological Sciences 373(1743):Article 20170062.Google Scholar
Farine, D. R., Spencer, K. A. & Boogert, N. J. (2015) Early-life stress triggers juvenile zebra finches to switch social learning strategies. Current Biology 25(16):2184–88.Google Scholar
Fogarty, L. & Creanza, N. (2017) The niche construction of cultural complexity: Interactions between innovations, population size and the environment. Philosophical Transactions of the Royal Society B: Biological Sciences 372(1735):pii: 20160428.Google Scholar
Fogarty, L., Creanza, N. & Feldman, M. W. (2013) The role of cultural transmission in human demographic change: An age-structured model. Theoretical Population Biology 88:6877.Google Scholar
Fogarty, L. (2015) Cultural evolutionary perspectives on creativity and human innovation. Trends in Ecology and Evolution 30(12):736–54.Google Scholar
Henrich, J., Boyd, R., Derex, M., Kline, M. A., Mesoudi, A., Muthukishna, M., Powell, A. T., Shennan, S. J. & Thomas, M. G. (2016) Understanding cumulative cultural evolution. Proceedings of the National Academy of Sciences USA 113(44):E6724E6725.Google Scholar
Houston, A. I. & McNamara, J. M. (1999) Models of adaptive behaviour: An approach based on state. Cambridge University Press.Google Scholar
Keynan, O., Ridley, A. R. & Lotem, A. (2016) Task-dependent differences in learning by subordinate and dominant wild Arabian babblers. Ethology 122(5):399410.Google Scholar
Kolodny, O., Creanza, N. & Feldman, M. W. (2015a) Evolution in leaps: The punctuated accumulation and loss of cultural innovations. Proceedings of the National Academy of Sciences USA 112(49):E6762–69.Google Scholar
Kolodny, O., Creanza, N. & Feldman, M. W. (2016) Game-changing innovations: How culture can change the parameters of its own evolution and induce abrupt cultural shifts. PLoS Computational Biology 12(12):e1005302.Google Scholar
Kolodny, O., Edelman, S. & Lotem, A. (2015b) Evolution of protolinguistic abilities as a by-product of learning to forage in structured environments. Proceedings of the Royal Society B: Biological Sciences 282(1811). Available at: http://doi.org/10.1098/rspb.2015.0353.Google Scholar
Kolodny, O., Edelman, S. & Lotem, A. (2015c) Evolved to adapt: A computational approach to animal innovation and creativity. Current Zoology 61(2):350–68.Google Scholar
Kolodny, O. & Stern, C. (2017) Evolution of risk preference is determined by reproduction dynamics, life history, and population size. Scientific Reports 7(1):9364.Google Scholar
Laland, K. N. & Reader, S. M. (1999) Foraging innovation in the guppy. Animal Behaviour 57(2):331–40.Google Scholar
Lemaire, V., Koehl, M., Le Moal, M. & Abrous, D. N. (2000) Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proceedings of the National Academy of Sciences USA (20):11032–37.Google Scholar
Lewis, H. M. & Laland, K. N. (2012) Transmission fidelity is the key to the build-up of cumulative culture. Philosophical Transactions of the Royal Society of London B: Bioligical Sciences 367(1599):2171–180.Google Scholar
McNamara, J. M. & Houston, A. I. (1992) Risk-sensitive foraging: A review of the theory. Bulletin of Mathematical Biology 54(2–3):355–78.Google Scholar
Morand-Ferron, J., Cole, E. F., Rawles, J. E. C. & Quinn, J. L. (2011) Who are the innovators? A field experiment with 2 passerine species. Behavioural Ecology 22(6):1241–48.Google Scholar
Nowicki, S, Searcy, W. A. & Peters, S. (2002) Brain development, song learning and mate choice in birds: A review and experimental test of the “nutritional stress hypothesis.” Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 188(11/12):10031014.Google Scholar
Reader, S. M. & Laland, K. N. (2003) Animal innovation. Oxford University Press.Google Scholar
Reader, S. M. & MacDonald, K. (2003) Environmental variability and primate behavioural flexibility. In: Animal Innovation, ed. Reader, S. M. & Laband, K. N., pp 83116. Oxford Scholarship Online.Google Scholar
Ricklefs, R. E. & Wikelski, M. (2002) The physiology/life-history nexus. Trends in Ecology and Evolution 17(10):462–68.Google Scholar
Sol, D., Griffin, A. S. & Bartomeus, I. (2012) Consumer and motor innovation in the common myna: The role of motivation and emotional responses. Animal Behaviour 83(1):179–88.Google Scholar
Stephens, D. W. & Charnov, E. L. (1982) Optimal foraging: Some simple stochastic models. Behavioral Ecology and Sociobiology 10(4):251–63.Google Scholar
Stephens, D. W. & Krebs, J. R. (1986) Foraging theory. Princeton University Press.Google Scholar
Thornton, A. & Samson, J. (2012) Innovative problem solving in wild meerkats. Animal Behaviour 83(6):1459–68.Google Scholar
Wang, X. T, Kruger, D. J. & Wilke, A. (2009) Life history variables and risk-taking propensity. Evolution and Human Behaviour 30(2):7784.Google Scholar
Wolf, M., van Doorn, G. S., Leimar, O. & Weissing, F. J. (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447(7144):581–84.Google Scholar