InAlN films and InAlN/GaN high electron mobility transistor (HEMT) structures were demonstrated on 150mm <111> Si using Veeco’s Propel single wafer metal-organic chemical vapor deposition (MOCVD) system. Smooth surfaces with root mean square (rms) roughness of 0.68 nm were observed in a 5x5 μm2 atomic force microscope (AFM) scan. X-ray diffraction (XRD) analysis shows well-defined layer peaks and fringes, indicating good structural quality and abrupt layer interfaces. Thickness uniformity of InAlN is 0.87%, 1σ, for a 7-point XRD measurement across the 150 mm wafer. Secondary ion mass spectrometry (SIMS) analysis confirms the uniform indium depth profile and the presence of abrupt layer interfaces. Negligible Ga (< 100 ppm, atomic) incorporation was detected in the InAlN bulk film. Film sheet resistance of 230Ω/sq, charge of 2.1×1013/cm2, and mobility of 1270 cm2/V.s were measured on a prototypical InAlN/GaN HEMT structure comprising a 10 nm-thick, 17% indium, InAlN barrier.