We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We give algorithms for approximating the partition function of the ferromagnetic $q$-color Potts model on graphs of maximum degree $d$. Our primary contribution is a fully polynomial-time approximation scheme for $d$-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters $d$ and $q$.
The original Specker–Blatter theorem (1983) was formulated for classes of structures $\mathcal {C}$ of one or several binary relations definable in Monadic Second Order Logic MSOL. It states that the number of such structures on the set $[n]$ is modularly C-finite (MC-finite). In previous work we extended this to structures definable in CMSOL, MSOL extended with modular counting quantifiers. The first author also showed that the Specker–Blatter theorem does not hold for one quaternary relation (2003).
If the vocabulary allows a constant symbol c, there are n possible interpretations on $[n]$ for c. We say that a constant c is hard-wired if c is always interpreted by the same element $j \in [n]$. In this paper we show:
(i) The Specker–Blatter theorem also holds for CMSOL when hard-wired constants are allowed. The proof method of Specker and Blatter does not work in this case.
(ii) The Specker–Blatter theorem does not hold already for $\mathcal {C}$ with one ternary relation definable in First Order Logic FOL. This was left open since 1983.
Using hard-wired constants allows us to show MC-finiteness of counting functions of various restricted partition functions which were not known to be MC-finite till now. Among them we have the restricted Bell numbers $B_{r,A}$, restricted Stirling numbers of the second kind $S_{r,A}$ or restricted Lah-numbers $L_{r,A}$. Here r is a non-negative integer and A is an ultimately periodic set of non-negative integers.
We propose a modification to the random destruction of graphs: given a finite network with a distinguished set of sources and targets, remove (cut) vertices at random, discarding components that do not contain a source node. We investigate the number of cuts required until all targets are removed, and the size of the remaining graph. This model interpolates between the random cutting model going back to Meir and Moon (J. Austral. Math. Soc.11, 1970) and site percolation. We prove several general results, including that the size of the remaining graph is a tight family of random variables for compatible sequences of expander-type graphs, and determine limiting distributions for binary caterpillar trees and complete binary trees.
We show that for a fixed $q$, the number of $q$-ary $t$-error correcting codes of length $n$ is at most $2^{(1 + o(1)) H_q(n,t)}$ for all $t \leq (1 - q^{-1})n - 2\sqrt{n \log n}$, where $H_q(n, t) = q^n/ V_q(n,t)$ is the Hamming bound and $V_q(n,t)$ is the cardinality of the radius $t$ Hamming ball. This proves a conjecture of Balogh, Treglown, and Wagner, who showed the result for $t = o(n^{1/3} (\log n)^{-2/3})$.
Let G be a finite transitive group on a set $\Omega $, let $\alpha \in \Omega $, and let $G_{\alpha }$ be the stabilizer of the point $\alpha $ in G. In this paper, we are interested in the proportion
$$ \begin{align*} \frac{|\{\omega\in \Omega\mid \omega \textrm{ lies in a }G_{\alpha}\textrm{-orbit of cardinality at most 2}\}|}{|\Omega|}, \end{align*} $$
that is, the proportion of elements of $\Omega $ lying in a suborbit of cardinality at most 2. We show that, if this proportion is greater than $5/6$, then each element of $\Omega $ lies in a suborbit of cardinality at most 2, and hence G is classified by a result of Bergman and Lenstra. We also classify the permutation groups attaining the bound $5/6$.
We use these results to answer a question concerning the enumeration of Cayley graphs. Given a transitive group G containing a regular subgroup R, we determine an upper bound on the number of Cayley graphs on R containing G in their automorphism groups.
We investigate quantum lens spaces, $C(L_q^{2n+1}(r;\underline {m}))$, introduced by Brzeziński and Szymański as graph $C^*$-algebras. We give a new description of $C(L_q^{2n+1}(r;\underline {m}))$ as graph $C^*$-algebras amending an error in the original paper by Brzeziński and Szymański. Furthermore, for $n\leq 3$, we give a number-theoretic invariant, when all but one weight are coprime to the order of the acting group r. This builds upon the work of Eilers, Restorff, Ruiz, and Sørensen.
The classic game of Battleship involves two players taking turns attempting to guess the positions of a fleet of vertically or horizontally positioned enemy ships hidden on a $10\times 10$ grid. One variant of this game, also referred to as Battleship Solitaire, Bimaru or Yubotu, considers the game with the inclusion of X-ray data, represented by knowledge of how many spots are occupied in each row and column in the enemy board. This paper considers the Battleship puzzle problem: the problem of reconstructing an enemy fleet from its X-ray data. We generate non-unique solutions to Battleship puzzles via certain reflection transformations akin to Ryser interchanges. Furthermore, we demonstrate that solutions of Battleship puzzles may be reliably obtained by searching for solutions of the associated classical binary discrete tomography problem which minimise the discrete Laplacian. We reformulate this optimisation problem as a quadratic unconstrained binary optimisation problem and approximate solutions via a simulated annealer, emphasising the future practical applicability of quantum annealers to solving discrete tomography problems with predefined structure.
We derive three critical exponents for Bernoulli site percolation on the uniform infinite planar triangulation (UIPT). First, we compute explicitly the probability that the root cluster is infinite. As a consequence, we show that the off-critical exponent for site percolation on the UIPT is $\beta = 1/2$. Then we establish an integral formula for the generating function of the number of vertices in the root cluster. We use this formula to prove that, at criticality, the probability that the root cluster has at least n vertices decays like $n^{-1/7}$. Finally, we also derive an expression for the law of the perimeter of the root cluster and use it to establish that, at criticality, the probability that the perimeter of the root cluster is equal to n decays like $n^{-4/3}$. Among these three exponents, only the last one was previously known. Our main tools are the so-called gasket decomposition of percolation clusters, generic properties of random Boltzmann maps, and analytic combinatorics.
Recently, Gross, Mansour and Tucker introduced the partial-dual polynomial of a ribbon graph as a generating function that enumerates all partial duals of the ribbon graph by Euler genus. It is analogous to the extensively studied polynomial in topological graph theory that enumerates by Euler genus all embeddings of a given graph. To investigate the partial-dual polynomial, one only needs to focus on bouquets: that is, ribbon graphs with exactly one vertex. In this paper, we shall further show that the partial-dual polynomial of a bouquet essentially depends on the signed intersection graph of the bouquet rather than on the bouquet itself. That is to say, two bouquets with the same signed intersection graph have the same partial-dual polynomial. We then give a characterisation of when a bouquet has a planar partial dual in terms of its signed intersection graph. Finally, we consider a conjecture posed by Gross, Mansour and Tucker that there is no orientable ribbon graph whose partial-dual polynomial has only one nonconstant term; this conjecture is false, and we give a characterisation of when all partial duals of a bouquet have the same Euler genus.
We study two models of an age-biased graph process: the
$\delta$
-version of the preferential attachment graph model (PAM) and the uniform attachment graph model (UAM), with m attachments for each of the incoming vertices. We show that almost surely the scaled size of a breadth-first (descendant) tree rooted at a fixed vertex converges, for
$m=1$
, to a limit whose distribution is a mixture of two beta distributions and a single beta distribution respectively, and that for
$m>1$
the limit is 1. We also analyze the likely performance of two greedy (online) algorithms, for a large matching set and a large independent set, and determine – for each model and each greedy algorithm – both a limiting fraction of vertices involved and an almost sure convergence rate.
We determine the asymptotics of the number of independent sets of size
$\lfloor \beta 2^{d-1} \rfloor$
in the discrete hypercube
$Q_d = \{0,1\}^d$
for any fixed
$\beta \in (0,1)$
as
$d \to \infty$
, extending a result of Galvin for
$\beta \in (1-1/\sqrt{2},1)$
. Moreover, we prove a multivariate local central limit theorem for structural features of independent sets in
$Q_d$
drawn according to the hard-core model at any fixed fugacity
$\lambda>0$
. In proving these results we develop several general tools for performing combinatorial enumeration using polymer models and the cluster expansion from statistical physics along with local central limit theorems.
We consider finite simple graphs. Given a graph H and a positive integer
$n,$
the Turán number of H for the order
$n,$
denoted
$\mathrm {ex}(n,H),$
is the maximum size of a graph of order n not containing H as a subgraph. Erdős asked: ‘For which graphs H is it true that every graph on n vertices and
$\mathrm {ex}(n,H)+1$
edges contains at least two H’s? Perhaps this is always true.’ We solve this problem in the negative by proving that for every integer
$k\ge 4$
there exists a graph H of order k and at least two orders n such that there exists a graph of order n and size
$\mathrm {ex}(n,H)+1$
which contains exactly one copy of
$H.$
Denote by
$C_4$
the
$4$
-cycle. We also prove that for every integer n with
$6\le n\le 11$
there exists a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
which contains exactly one copy of
$C_4,$
but, for
$n=12$
or
$n=13,$
the minimum number of copies of
$C_4$
in a graph of order n and size
$\mathrm {ex}(n,C_4)+1$
is two.
A meander is a topological configuration of a line and a simple closed curve in the plane (or a pair of simple closed curves on the 2-sphere) intersecting transversally. Meanders can be traced back to H. Poincaré and naturally appear in various areas of mathematics, theoretical physics and computational biology (in particular, they provide a model of polymer folding). Enumeration of meanders is an important open problem. The number of meanders with $2N$ crossings grows exponentially when $N$ grows, but the long-standing problem on the precise asymptotics is still out of reach.
We show that the situation becomes more tractable if one additionally fixes the topological type (or the total number of minimal arcs) of a meander. Then we are able to derive simple asymptotic formulas for the numbers of meanders as $N$ tends to infinity. We also compute the asymptotic probability of getting a simple closed curve on a sphere by identifying the endpoints of two arc systems (one on each of the two hemispheres) along the common equator.
The new tools we bring to bear are based on interpretation of meanders as square-tiled surfaces with one horizontal and one vertical cylinder. The proofs combine recent results on Masur–Veech volumes of moduli spaces of meromorphic quadratic differentials in genus zero with our new observation that horizontal and vertical separatrix diagrams of integer quadratic differentials are asymptotically uncorrelated. The additional combinatorial constraints we impose in this article yield explicit polynomial asymptotics.
We prove a generalmulti-dimensional central limit theorem for the expected number of vertices of a given degree in the family of planar maps whose vertex degrees are restricted to an arbitrary (finite or infinite) set of positive integers D. Our results rely on a classical bijection with mobiles (objects exhibiting a tree structure), combined with refined analytic tools to deal with the systems of equations on infinite variables that arise. We also discuss possible extensions to maps of higher genus and to weighted maps.
The ${{c}_{2}}$ invariant is an arithmetic graph invariant defined by Schnetz. It is useful for understanding Feynman periods. Brown and Schnetz conjectured that the ${{c}_{2}}$ invariant has a particular symmetry known as completion invariance. This paper will prove completion invariance of the ${{c}_{2}}$ invariant in the case where we are over the field with 2 elements and the completed graph has an odd number of vertices. The methods involve enumerating certain edge bipartitions of graphs; two different constructions are needed.
In this paper we introduce some Christoffel–Darboux type identities for independence polynomials. As an application, we give a new proof of a theorem of Chudnovsky and Seymour, which states that the independence polynomial of a claw-free graph has only real roots. Another application is related to a conjecture of Merrifield and Simmons.
Inspired by the recent work of M. Nakasuji, O. Phuksuwan and Y. Yamasaki, we combine interpolated multiple zeta values and Schur multiple zeta values into one object, which we call interpolated Schur multiple zeta values. Our main result will be a Jacobi–Trudi formula for a certain class of these new objects. This generalizes an analogous result for Schur multiple zeta values and implies algebraic relations between interpolated multiple zeta values.
In 1990 Bender, Canfield and McKay gave an asymptotic formula for the number of connected graphs on [n] = {1,2,. . .,n} with m edges, whenever n and the nullity m−n+1 tend to infinity. Let Cr(n,t) be the number of connected r-uniform hypergraphs on [n] with nullity t = (r−1)m−n+1, where m is the number of edges. For r ≥ 3, asymptotic formulae for Cr(n,t) are known only for partial ranges of the parameters: in 1997 Karoński and Łuczak gave one for t = o(log n/log log n), and recently Behrisch, Coja-Oghlan and Kang gave one for t=Θ(n). Here we prove such a formula for any fixed r ≥ 3 and any t = t(n) satisfying t = o(n) and t→∞ as n→∞, complementing the last result. This leaves open only the case t/n→∞, which we expect to be much simpler, and will consider in future work. The proof is based on probabilistic methods, and in particular on a bivariate local limit theorem for the number of vertices and edges in the largest component of a certain random hypergraph. We deduce this from the corresponding central limit theorem by smoothing techniques.