We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let G and H be two vertex disjoint graphs. The join$G+H$ is the graph with $V(G+H)=V(G)+V(H)$ and $E(G+H)=E(G)\cup E(H)\cup \{xy\;|\; x\in V(G), y\in V(H)\}$. A (finite) linear forest is a graph consisting of (finite) vertex disjoint paths. We prove that for any finite linear forest F and any nonnull graph H, if $\{F, H\}$-free graphs have a $\chi $-binding function $f(\omega )$, then $\{F, K_n+H\}$-free graphs have a $\chi $-binding function $kf(\omega )$ for some constant k.
We investigate the list packing number of a graph, the least $k$ such that there are always $k$ disjoint proper list-colourings whenever we have lists all of size $k$ associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree $\Delta$ has list packing number at most $\Delta +1$. Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.
A cycle C of a graph G is dominating if $V(C)$ is a dominating set and $V(G)\backslash V(C)$ is an independent set. Wu et al. [‘Degree sums and dominating cycles’, Discrete Mathematics344 (2021), Article no. 112224] proved that every longest cycle of a k-connected graph G on $n\geq 3$ vertices with $k\geq 2$ is dominating if the degree sum is more than $(k+1)(n+1)/3$ for any $k+1$ pairwise nonadjacent vertices. They also showed that this bound is sharp. In this paper, we show that the extremal graphs G for this condition satisfy $(n-2)/3K_1\vee (n+1)/3K_2 \subseteq G \subseteq K_{(n-2)/3}\vee (n+1)/3K_2$ or $2K_1\vee 3K_{(n-2)/3}\subseteq G \subseteq K_2\vee 3K_{(n-2)/3}.$
In an isolate-free graph G, a subset S of vertices is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number of G, denoted by $\gamma _{t2}(G)$, is the minimum cardinality of a semitotal dominating set in G. Goddard, Henning and McPillan [‘Semitotal domination in graphs’, Utilitas Math.94 (2014), 67–81] characterised the trees and graphs of minimum degree 2 with semitotal domination number half their order. In this paper, we characterise all graphs whose semitotal domination number is half their order.
Given a graph $F$, we consider the problem of determining the densest possible pseudorandom graph that contains no copy of $F$. We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than $n^{-1/3}$ must contain a copy of the Peterson graph, while the previous best result gives the bound $n^{-1/4}$. Moreover, we conjecture that the exponent $1/3$ in our bound is tight. We also construct the densest known pseudorandom $K_{2,3}$-free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.
The minimum number of idempotent generators is calculated for an incidence algebra of a finite poset over a commutative ring. This quantity equals either $\lceil \log _2 n\rceil $ or $\lceil \log _2 n\rceil +1$, where n is the cardinality of the poset. The two cases are separated in terms of the embedding of the Hasse diagram of the poset into the complement of the hypercube graph.
In an isolate-free graph G, a subset S of vertices is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number of G, denoted by $\gamma _{t2}(G)$, is the minimum cardinality of a semitotal dominating set in G. Using edge weighting functions on semitotal dominating sets, we prove that if $G\neq N_2$ is a connected claw-free graph of order $n\geq 6$ with minimum degree $\delta (G)\geq 3$, then $\gamma _{t2}(G)\leq \frac{4}{11}n$ and this bound is sharp, disproving the conjecture proposed by Zhu et al. [‘Semitotal domination in claw-free cubic graphs’, Graphs Combin.33(5) (2017), 1119–1130].
The Hoffman ratio bound, Lovász theta function, and Schrijver theta function are classical upper bounds for the independence number of graphs, which are useful in graph theory, extremal combinatorics, and information theory. By using generalized inverses and eigenvalues of graph matrices, we give bounds for independence sets and the independence number of graphs. Our bounds unify the Lovász theta function, Schrijver theta function, and Hoffman-type bounds, and we obtain the necessary and sufficient conditions of graphs attaining these bounds. Our work leads to some simple structural and spectral conditions for determining a maximum independent set, the independence number, the Shannon capacity, and the Lovász theta function of a graph.
We study the locations of complex zeroes of independence polynomials of bounded-degree hypergraphs. For graphs, this is a long-studied subject with applications to statistical physics, algorithms, and combinatorics. Results on zero-free regions for bounded-degree graphs include Shearer’s result on the optimal zero-free disc, along with several recent results on other zero-free regions. Much less is known for hypergraphs. We make some steps towards an understanding of zero-free regions for bounded-degree hypergaphs by proving that all hypergraphs of maximum degree $\Delta$ have a zero-free disc almost as large as the optimal disc for graphs of maximum degree $\Delta$ established by Shearer (of radius $\sim 1/(e \Delta )$). Up to logarithmic factors in $\Delta$ this is optimal, even for hypergraphs with all edge sizes strictly greater than $2$. We conjecture that for $k\ge 3$, $k$-uniform linear hypergraphs have a much larger zero-free disc of radius $\Omega (\Delta ^{- \frac{1}{k-1}} )$. We establish this in the case of linear hypertrees.
Let G be a graph with no isolated vertex. A semitotal forcing set of G is a (zero) forcing set S such that every vertex in S is within distance 2 of another vertex of S. The semitotal forcing number $F_{t2}(G)$ is the minimum cardinality of a semitotal forcing set in G. In this paper, we prove that it is NP-complete to determine the semitotal forcing number of a graph. We also prove that if $G\neq K_n$ is a connected graph of order $n\geq 4$ with maximum degree $\Delta \geq 2$, then $F_{t2}(G)\leq (\Delta-1)n/\Delta$, with equality if and only if either $G=C_{4}$ or $G=P_{4}$ or $G=K_{\Delta ,\Delta }$.
An old conjecture of Erdős and McKay states that if all homogeneous sets in an
$n$
-vertex graph are of order
$O(\!\log n)$
then the graph contains induced subgraphs of each size from
$\{0,1,\ldots, \Omega \big(n^2\big)\}$
. We prove a bipartite analogue of the conjecture: if all balanced homogeneous sets in an
$n \times n$
bipartite graph are of order
$O(\!\log n)$
, then the graph contains induced subgraphs of each size from
$\{0,1,\ldots, \Omega \big(n^2\big)\}$
.
The diamond is the complete graph on four vertices minus one edge; $P_n$ and $C_n$ denote the path and cycle on n vertices, respectively. We prove that the chromatic number of a $(P_6,C_4,\mbox {diamond})$-free graph G is no larger than the maximum of 3 and the clique number of G.
Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing Jump but below ATR
$_{0}$
(and so
$\Pi _{1}^{1}$
-CA
$_{0}$
or the hyperjump). There is a long history of proof theoretic principles which are THAs. Until Barnes, Goh, and Shore [ta] revealed an array of theorems in graph theory living in this neighborhood, there was only one mathematical denizen. In this paper we introduce a new neighborhood of theorems which are almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA
$_{0}$
they are THAs but on their own they are very weak. We generalize several conservativity classes (
$\Pi _{1}^{1}$
, r-
$\Pi _{2}^{1}$
, and Tanaka) and show that all our examples (and many others) are conservative over RCA
$_{0}$
in all these senses and weak in other recursion theoretic ways as well. We provide denizens, both mathematical and logical. These results answer a question raised by Hirschfeldt and reported in Montalbán [2011] by providing a long list of pairs of principles one of which is very weak over RCA
$_{0}$
but over ACA
$_{0}$
is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second order arithmetic.
A hypergraph
$\mathcal{F}$
is non-trivial intersecting if every pair of edges in it have a nonempty intersection, but no vertex is contained in all edges of
$\mathcal{F}$
. Mubayi and Verstraëte showed that for every
$k \ge d+1 \ge 3$
and
$n \ge (d+1)k/d$
every
$k$
-graph
$\mathcal{H}$
on
$n$
vertices without a non-trivial intersecting subgraph of size
$d+1$
contains at most
$\binom{n-1}{k-1}$
edges. They conjectured that the same conclusion holds for all
$d \ge k \ge 4$
and sufficiently large
$n$
. We confirm their conjecture by proving a stronger statement.
They also conjectured that for
$m \ge 4$
and sufficiently large
$n$
the maximum size of a
$3$
-graph on
$n$
vertices without a non-trivial intersecting subgraph of size
$3m+1$
is achieved by certain Steiner triple systems. We give a construction with more edges showing that their conjecture is not true in general.
Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in the realms of reverse mathematics and recursion-theoretic complexity. They lie above all the fixed (recursive) iterations of the Turing jump but below ATR
$_{0}$
(and so
$\Pi _{1}^{1}$
-CA
$_{0}$
or the hyperjump). There is a long history of proof-theoretic principles which are THAs. Until the papers reported on in this communication, there was only one mathematical example. Barnes, Goh, and Shore [1] analyze an array of ubiquity theorems in graph theory descended from Halin’s [9] work on rays in graphs. They seem to be typical applications of ACA
$_{0}$
but are actually THAs. These results answer Question 30 of Montalbán’s Open Questions in Reverse Mathematics [19] and supply several other natural principles of different and unusual levels of complexity.
This work led in [25] to a new neighborhood of the reverse mathematical zoo: almost theorems of hyperarithmetic analysis (ATHAs). When combined with ACA
$_{0}$
they are THAs but on their own are very weak. Denizens both mathematical and logical are provided. Generalizations of several conservativity classes (
$\Pi _{1}^{1}$
, r-
$\Pi _{1}^{1}$
, and Tanaka) are defined and these ATHAs as well as many other principles are shown to be conservative over RCA
$_{0}$
in all these senses and weak in other recursion-theoretic ways as well. These results answer a question raised by Hirschfeldt and reported in [19] by providing a long list of pairs of principles one of which is very weak over RCA
$_{0}$
but over ACA
$_{0}$
is equivalent to the other which may be strong (THA) or very strong going up a standard hierarchy and at the end being stronger than full second-order arithmetic.
We determine the asymptotics of the number of independent sets of size
$\lfloor \beta 2^{d-1} \rfloor$
in the discrete hypercube
$Q_d = \{0,1\}^d$
for any fixed
$\beta \in (0,1)$
as
$d \to \infty$
, extending a result of Galvin for
$\beta \in (1-1/\sqrt{2},1)$
. Moreover, we prove a multivariate local central limit theorem for structural features of independent sets in
$Q_d$
drawn according to the hard-core model at any fixed fugacity
$\lambda>0$
. In proving these results we develop several general tools for performing combinatorial enumeration using polymer models and the cluster expansion from statistical physics along with local central limit theorems.
Let
$\gamma(G)$
and
$${\gamma _ \circ }(G)$$
denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then
$$\begin{equation}\gamma(G) \leq \frac{n}{d}(\log d + 1).\end{equation}$$
In this paper the main result is that if G is any n-vertex d-regular graph of girth at least five, then
$$\begin{equation}\gamma_(G) \leq \frac{n}{d}(\log d + c)\end{equation}$$
for some constant c independent of d. This result is sharp in the sense that as
$d \rightarrow \infty$
, almost all d-regular n-vertex graphs G of girth at least five have
Furthermore, if G is a disjoint union of
${n}/{(2d)}$
complete bipartite graphs
$K_{d,d}$
, then
${\gamma_\circ}(G) = \frac{n}{2}$
. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than d log d such that
${\gamma_\circ}(G) \sim {n}/{2}$
as
$d \rightarrow \infty$
. Therefore both the girth and regularity conditions are required for the main result.
We give an efficient algorithm that, given a graph G and a partition V1,…,Vm of its vertex set, finds either an independent transversal (an independent set {v1,…,vm} in G such that ${v_i} \in {V_i}$ for each i), or a subset ${\cal B}$ of vertex classes such that the subgraph of G induced by $\bigcup\nolimits_{\cal B}$ has a small dominating set. A non-algorithmic proof of this result has been known for a number of years and has been used to solve many other problems. Thus we are able to give algorithmic versions of many of these applications, a few of which we describe explicitly here.
In 1987, Alavi, Malde, Schwenk and Erdős conjectured that the independence polynomial of any tree is unimodal. Although it attracts many researchers' attention, it is still open. Motivated by this conjecture, in this paper, we prove that rooted products of some graphs preserve real rootedness of independence polynomials. As application, we not only give a unified proof for some known results, but also we can apply them to generate infinite kinds of trees whose independence polynomials have only real zeros. Thus their independence polynomials are unimodal.
We investigate the domination game and the game domination number $\unicode[STIX]{x1D6FE}_{g}$ in the class of split graphs. We prove that $\unicode[STIX]{x1D6FE}_{g}(G)\leq n/2$ for any isolate-free $n$-vertex split graph $G$, thus strengthening the conjectured $3n/5$ general bound and supporting Rall’s $\lceil n/2\rceil$-conjecture. We also characterise split graphs of even order with $\unicode[STIX]{x1D6FE}_{g}(G)=n/2$.