We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular moduli, where one views class numbers as traces of the constant function $j_0(\tau )=1$. More generally, we consider the singular moduli for the Hecke system of modular functions
For each $\nu \geq 0$ and $m\geq 1$, we obtain an Eichler–Selberg relation. For $\nu =0$ and $m\in \{1, 2\},$ these relations are Kaneko’s celebrated singular moduli formulas for the coefficients of $j(\tau ).$ For each $\nu \geq 1$ and $m\geq 1,$ we obtain a new Eichler–Selberg trace formula for the Hecke action on the space of weight $2 \nu +2$ cusp forms, where the traces of $j_m(\tau )$ singular moduli replace Hurwitz–Kronecker class numbers. These formulas involve a new term that is assembled from values of symmetrized shifted convolution L-functions.
We investigate the Gross–Prasad conjecture and its refinement for the Bessel periods in the case of $(\mathrm {SO}(5), \mathrm {SO}(2))$. In particular, by combining several theta correspondences, we prove the Ichino–Ikeda-type formula for any tempered irreducible cuspidal automorphic representation. As a corollary of our formula, we prove an explicit formula relating certain weighted averages of Fourier coefficients of holomorphic Siegel cusp forms of degree two, which are Hecke eigenforms, to central special values of $L$-functions. The formula is regarded as a natural generalization of the Böcherer conjecture to the non-trivial toroidal character case.
We formulate and prove the archimedean period relations for Rankin–Selberg convolutions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$. As a consequence, we prove the period relations for critical values of the Rankin–Selberg L-functions for ${\mathrm {GL}}(n)\times {\mathrm {GL}}(n-1)$ over arbitrary number fields.
Let $\mathfrak {F}_n$ be the set of all cuspidal automorphic representations $\pi$ of $\mathrm {GL}_n$ with unitary central character over a number field $F$. We prove the first unconditional zero density estimate for the set $\mathcal {S}=\{L(s,\pi \times \pi ')\colon \pi \in \mathfrak {F}_n\}$ of Rankin–Selberg $L$-functions, where $\pi '\in \mathfrak {F}_{n'}$ is fixed. We use this density estimate to establish: (i) a hybrid-aspect subconvexity bound at $s=\frac {1}{2}$ for almost all $L(s,\pi \times \pi ')\in \mathcal {S}$; (ii) a strong on-average form of effective multiplicity one for almost all $\pi \in \mathfrak {F}_n$; and (iii) a positive level of distribution for $L(s,\pi \times \widetilde {\pi })$, in the sense of Bombieri–Vinogradov, for each $\pi \in \mathfrak {F}_n$.
We investigate Eisenstein congruences between the so-called Euler systems of Garrett–Rankin–Selberg type. This includes the cohomology classes of Beilinson–Kato, Beilinson–Flach, and diagonal cycles. The proofs crucially rely on different known versions of the Bloch–Kato conjecture, and are based on the study of the Perrin-Riou formalism and the comparison between the different p-adic L-functions.
In this paper, we prove uniform bounds for $\operatorname {GL}(3)\times \operatorname {GL}(2) \ L$-functions in the $\operatorname {GL}(2)$ spectral aspect and the t aspect by a delta method. More precisely, let $\phi $ be a Hecke–Maass cusp form for $\operatorname {SL}(3,\mathbb {Z})$ and f a Hecke–Maass cusp form for $\operatorname {SL}(2,\mathbb {Z})$ with the spectral parameter $t_f$. Then for $t\in \mathbb {R}$ and any $\varepsilon>0$, we have
We prove that the homology classes of closed geodesics associated to subgroups of narrow class groups of real quadratic fields concentrate around the Eisenstein line. This fits into the framework of Duke’s Theorem and can be seen as a real quadratic analogue of results of Michel and Liu–Masri–Young on supersingular reduction of CM-elliptic curves. We also study the level aspect, as well as a homological version of the sup norm problem. Finally, we present applications to group theory and modular forms
Romyar Sharifi has constructed a map $\varpi _M$ from the first homology of the modular curve $X_1(M)$ to the K-group $K_2(\operatorname {\mathrm {\mathbf {Z}}}[\zeta _M+\zeta _M^{-1}, \frac {1}{M}]) \otimes \operatorname {\mathrm {\mathbf {Z}}}[1/2]$, where $\zeta _M$ is a primitive Mth root of unity. Sharifi conjectured that $\varpi _M$ is annihilated by a certain Eisenstein ideal. Fukaya and Kato proved this conjecture after tensoring with $\operatorname {\mathrm {\mathbf {Z}}}_p$ for a prime $p\geq 5$ dividing M. More recently, Sharifi and Venkatesh proved the conjecture for Hecke operators away from M. In this note, we prove two main results. First, we give a relation between $\varpi _M$ and $\varpi _{M'}$ when $M' \mid M$. Our method relies on the techniques developed by Sharifi and Venkatesh. We then use this result in combination with results of Fukaya and Kato in order to get the Eisenstein property of $\varpi _M$ for Hecke operators of index dividing M.
In this paper, we prove the algebraicity of some L-values attached to quaternionic modular forms. We follow the rather well-established path of the doubling method. Our main contribution is that we include the case where the corresponding symmetric space is of non-tube type. We make various aspects very explicit, such as the doubling embedding, coset decomposition, and the definition of algebraicity of modular forms via CM-points.
In this paper, we prove one divisibility of the Iwasawa–Greenberg main conjecture for the Rankin–Selberg product of a weight two cusp form and an ordinary complex multiplication form of higher weight, using congruences between Klingen Eisenstein series and cusp forms on $\mathrm {GU}(3,1)$, generalizing an earlier result of the third-named author to allow nonordinary cusp forms. The main result is a key input in the third-named author’s proof of Kobayashi’s $\pm $-main conjecture for supersingular elliptic curves. The new ingredient here is developing a semiordinary Hida theory along an appropriate smaller weight space and a study of the semiordinary Eisenstein family.
For an (irreducible) recurrence equation with coefficients from
$\mathbb Z[n]$
and its two linearly independent rational solutions
$u_n,v_n$
, the limit of
$u_n/v_n$
as
$n\to \infty $
, when it exists, is called the Apéry limit. We give a construction that realises certain quotients of L-values of elliptic curves as Apéry limits.
Let F be a Siegel cusp form of degree
$2$
, even weight
$k \ge 2$
, and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients
$a(F,S)$
of F at fundamental matrices S (i.e., with
$-4\det (S)$
equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with
$\det (S) \asymp X$
, the sequence
$a(F,S)$
has at least
$X^{1-\varepsilon }$
sign changes and takes at least
$X^{1-\varepsilon }$
‘large values’. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan–Gross–Prasad conjecture, we prove the bound
$\lvert a(F,S)\rvert \ll _{F, \varepsilon } \frac {\det (S)^{\frac {k}2 - \frac {1}{2}}}{ \left (\log \lvert \det (S)\rvert \right )^{\frac 18 - \varepsilon }}$
for fundamental matrices S.
Following Ryan and Tornaría, we prove that moduli of congruences of Hecke eigenvalues, between Saito–Kurokawa lifts and non-lifts (certain Siegel modular forms of genus 2), occur (squared) in denominators of central spinor L-values (divided by twists) for the non-lifts. This is conditional on Böcherer’s conjecture and its analogues and is viewed in the context of recent work of Furusawa, Morimoto and others. It requires a congruence of Fourier coefficients, which follows from a uniqueness assumption or can be proved in examples. We explain these factors in denominators via a close examination of the Bloch–Kato conjecture.
The main aim of this article is to show that normalised standard intertwining operator between induced representations of p-adic groups, at a very specific point of evaluation, has an arithmetic origin. This result has applications to Eisenstein cohomology and the special values of automorphic L-functions.
La formule des traces relative de Jacquet–Rallis (pour les groupes unitaires ou les groupes linéaires généraux) est une identité entre des périodes des représentations automorphes et des distributions géométriques. Selon Jacquet et Rallis, une comparaison de ces deux formules des traces relatives devrait aboutir à une démonstration des conjectures de Gan–Gross–Prasad et Ichino–Ikeda pour les groupes unitaires. Les termes géométriques des groupes unitaires ou des groupes linéaires sont indexés par les points rationnels d'un espace quotient commun. Nous établissons que ces termes géométriques peuvent être vus comme des fonctionnelles sur des espaces d'intégrales orbitales semi-simples régulières locales. En outre, nous montrons que point par point ces distributions sont en fait égales, via l'identification des espaces d'intégrales orbitales locales donnée par le transfert et le lemme fondamental (essentiellement connus dans cette situation). Cela donne leur comparaison et cela clôt la partie géométrique du programme de Jacquet–Rallis. Notre résultat principal est donc un analogue de la stabilisation de la partie géométrique de la formule des traces due à Langlands, Kottwitz et Arthur.
Lapid and Mao formulated a conjecture on an explicit formula of Whittaker–Fourier coefficients of automorphic forms on quasi-split reductive groups and metaplectic groups as an analogue of the Ichino–Ikeda conjecture. They also showed that this conjecture is reduced to a certain local identity in the case of unitary groups. In this article, we study the even unitary-group case. Indeed, we prove this local identity over p-adic fields. Further, we prove an equivalence between this local identity and a refined formal degree conjecture over any local field of characteristic zero. As a consequence, we prove a refined formal degree conjecture over p-adic fields and get an explicit formula of Whittaker–Fourier coefficients under certain assumptions.
The principal aim of this article is to attach and study $p$-adic $L$-functions to cohomological cuspidal automorphic representations $\Pi$ of $\operatorname {GL}_{2n}$ over a totally real field $F$ admitting a Shalika model. We use a modular symbol approach, along the global lines of the work of Ash and Ginzburg, but our results are more definitive because we draw heavily upon the methods used in the recent and separate works of all three authors. By construction, our $p$-adic $L$-functions are distributions on the Galois group of the maximal abelian extension of $F$ unramified outside $p\infty$. Moreover, we work under a weaker Panchishkine-type condition on $\Pi _p$ rather than the full ordinariness condition. Finally, we prove the so-called Manin relations between the $p$-adic $L$-functions at all critical points. This has the striking consequence that, given a unitary $\Pi$ whose standard $L$-function admits at least two critical points, and given a prime $p$ such that $\Pi _p$ is ordinary, the central critical value $L(\frac {1}{2}, \Pi \otimes \chi )$ is non-zero for all except finitely many Dirichlet characters $\chi$ of $p$-power conductor.
We improve upon the local bound in the depth aspect for sup-norms of newforms on $D^\times$, where $D$ is an indefinite quaternion division algebra over ${\mathbb {Q}}$. Our sup-norm bound implies a depth-aspect subconvexity bound for $L(1/2, f \times \theta _\chi )$, where $f$ is a (varying) newform on $D^\times$ of level $p^n$, and $\theta _\chi$ is an (essentially fixed) automorphic form on $\textrm {GL}_2$ obtained as the theta lift of a Hecke character $\chi$ on a quadratic field. For the proof, we augment the amplification method with a novel filtration argument and a recent counting result proved by the second-named author to reduce to showing strong quantitative decay of matrix coefficients of local newvectors along compact subsets, which we establish via $p$-adic stationary phase analysis. Furthermore, we prove a general upper bound in the level aspect for sup-norms of automorphic forms belonging to any family whose associated matrix coefficients have such a decay property.
It has been well established that congruences between automorphic forms have far-reaching applications in arithmetic. In this paper, we construct congruences for Siegel–Hilbert modular forms defined over a totally real field of class number 1. As an application of this general congruence, we produce congruences between paramodular Saito–Kurokawa lifts and non-lifted Siegel modular forms. These congruences are used to produce evidence for the Bloch–Kato conjecture for elliptic newforms of square-free level and odd functional equation.
We define variants of PEL type of the Shimura varieties that appear in the context of the arithmetic Gan–Gross–Prasad (AGGP) conjecture. We formulate for them a version of the AGGP conjecture. We also construct (global and semi-global) integral models of these Shimura varieties and formulate for them conjectures on arithmetic intersection numbers. We prove some of these conjectures in low dimension.