We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For every positive integer d, we show that there must exist an absolute constant $c \gt 0$ such that the following holds: for any integer $n \geqslant cd^{7}$ and any red-blue colouring of the one-dimensional subspaces of $\mathbb{F}_{2}^{n}$, there must exist either a d-dimensional subspace for which all of its one-dimensional subspaces get coloured red or a 2-dimensional subspace for which all of its one-dimensional subspaces get coloured blue. This answers recent questions of Nelson and Nomoto, and confirms that for any even plane binary matroid N, the class of N-free, claw-free binary matroids is polynomially $\chi$-bounded.
Our argument will proceed via a reduction to a well-studied additive combinatorics problem, originally posed by Green: given a set $A \subset \mathbb{F}_{2}^{n}$ with density $\alpha \in [0,1]$, what is the largest subspace that we can find in $A+A$? Our main contribution to the story is a new result for this problem in the regime where $1/\alpha$ is large with respect to n, which utilises ideas from the recent breakthrough paper of Kelley and Meka on sets of integers without three-term arithmetic progressions.
A set of complex numbers $S$ is called invariant if it is closed under addition and multiplication, namely, for any $x, y \in S$ we have $x+y \in S$ and $xy \in S$. For each $s \in {\mathbb {C}}$ the smallest invariant set ${\mathbb {N}}[s]$ containing $s$ consists of all possible sums $\sum _{i \in I} a_i s^i$, where $I$ runs over all finite nonempty subsets of the set of positive integers ${\mathbb {N}}$ and $a_i \in {\mathbb {N}}$ for each $i \in I$. In this paper, we prove that for $s \in {\mathbb {C}}$ the set ${\mathbb {N}}[s]$ is everywhere dense in ${\mathbb {C}}$ if and only if $s \notin {\mathbb {R}}$ and $s$ is not a quadratic algebraic integer. More precisely, we show that if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is a transcendental number, then there is a positive integer $n$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for either $t=s$ or $t=s+s^2$. Similarly, if $s \in {\mathbb {C}} \setminus {\mathbb {R}}$ is an algebraic number of degree $d \ne 2, 4$, then there are positive integers $n, m$ such that the sumset ${\mathbb {N}} t^n+{\mathbb {N}} t^{2n} +{\mathbb {N}} t^{3n}$ is everywhere dense in ${\mathbb {C}}$ for $t=ms+s^2$. For quadratic and some special quartic algebraic numbers $s$ it is shown that a similar sumset of three sets cannot be dense. In each of these two cases the density of ${\mathbb {N}}[s]$ in ${\mathbb {C}}$ is established by a different method: for those special quartic numbers, it is possible to take a sumset of four sets.
In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (ergodic) proof due to Furstenberg (Section 3). Furstenberg’s ergodic proof is striking because it utilizes intuitively foreign and infinitary resources to prove a finitary combinatorial result and does so in a perspicuous fashion. I claim that Furstenberg’s proof is explanatory in light of its clear expression of a crucial structural result, which provides the “reason why” Szemerédi’s theorem is true. This is, however, rather surprising: how can such intuitively different conceptual resources “get a grip on” the theorem to be proved? I account for this phenomenon by articulating a new construal of the content of a mathematical statement, which I call structural content (Section 4). I argue that the availability of structural content saves intuitive epistemic distinctions made in mathematical practice and simultaneously explicates the intervention of surprising and explanatorily rich conceptual resources. Structural content also disarms general arguments for thinking that impurity and explanatory power might come apart. Finally, I sketch a proposal that, once structural content is in hand, impure resources lead to explanatory proofs via suitably understood varieties of simplification and unification (Section 5).
For a subset S of nonnegative integers and a vector
$\mathbf {a}=(a_1,\ldots ,a_k)$
of positive integers, define the set
$V^{\prime }_S(\mathbf {a})=\{ a_1s_1+\cdots +a_ks_k : s_i\in S\}-\{0\}$
. For a positive integer n, let
$\mathcal T(n)$
be the set of integers greater than or equal to n. We consider the problem of finding all vectors
$\mathbf {a}$
satisfying
$V^{\prime }_S(\mathbf {a})=\mathcal T(n)$
when S is the set of (generalised) m-gonal numbers and n is a positive integer. In particular, we completely resolve the case when S is the set of triangular numbers.
Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$. A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$, $i\not =c$, the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$. Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.
Extending a result by Alon, Linial, and Meshulam to abelian groups, we prove that if G is a finite abelian group of exponent m and S is a sequence of elements of G such that any subsequence of S consisting of at least
$$|S| - m\ln |G|$$
elements generates G, then S is an additive basis of G . We also prove that the additive span of any l generating sets of G contains a coset of a subgroup of size at least
$$|G{|^{1 - c{ \in ^l}}}$$
for certain c=c(m) and
$$ \in = \in (m) < 1$$
; we use the probabilistic method to give sharper values of c(m) and
$$ \in (m)$$
in the case when G is a vector space; and we give new proofs of related known results.
A new estimate for the exponential sum with square-free numbers is established. This result is applied to the problem of finding the number of representations of a large integer as a sum of three square-free numbers.
Let $G$ be an additively written abelian group, and let $S$ be a sequence in $G \setminus \{0\}$ with length $|S| \ge 4$. Suppose that $S$ is a product of two subsequences, say $S = B C$, such that the element $g+h$ occurs in the sequence $S$ whenever $g \cdot h$ is a subsequence of $B$ or of $C$. Then $S$ contains a proper zero-sum subsequence, apart from some well-characterized exceptional cases. This result is closely connected with restricted set addition in abelian groups. Moreover, it solves a problem on the structure of minimal zero-sum sequences, which recently occurred in the theory of non-unique factorizations.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.