We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $(A,\mathfrak{m})$ be a regular local ring of dimension $d \geq 1$, I an $\mathfrak{m}$-primary ideal. Let N be a nonzero finitely generated A-module. Consider the functions
of polynomial type and let their degrees be $t^I(N) $ and $e^I(N)$. We prove that $t^I(N) = e^I(N) = \max\{\dim N, d -1 \}$. A crucial ingredient in the proof is that $D^b(A)_f$, the bounded derived category of A with finite length cohomology, has no proper thick subcategories.
We give a short new proof of a recent result of Hanlon-Hicks-Lazarev about toric varieties. As in their work, this leads to a proof of a conjecture of Berkesch-Erman-Smith on virtual resolutions and to a resolution of the diagonal in the simplicial case.
We invoke the Bernstein–Gel$'$fand–Gel$'$fand (BGG) correspondence to study subcomplexes of free resolutions given by two well-known complexes, the Koszul and the Eagon–Northcott. This approach provides a complete characterization of the ranks of free modules in a subcomplex in the Koszul case and imposes numerical restrictions in the Eagon–Northcott case.
It is well known that the edge ideal $I(G)$ of a simple graph G has linear quotients if and only if $G^c$ is chordal. We investigate when the property of having linear quotients is inherited by homological shift ideals of an edge ideal. We will see that adding a cluster to the graph $G^c$ when $I(G)$ has homological linear quotients results in a graph with the same property. In particular, $I(G)$ has homological linear quotients when $G^c$ is a block graph. We also show that adding pinnacles to trees preserves the property of having homological linear quotients for the edge ideal of their complements. Furthermore, $I(G)$ has homological linear quotients for every graph G such that $G^c$ is a $\lambda $-minimal chordal graph.
This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.
In this paper, we study the Koszul property of the homogeneous coordinate ring of a generic collection of lines in $\mathbb {P}^n$ and the homogeneous coordinate ring of a collection of lines in general linear position in $\mathbb {P}^n.$ We show that if $\mathcal {M}$ is a collection of m lines in general linear position in $\mathbb {P}^n$ with $2m \leq n+1$ and R is the coordinate ring of $\mathcal {M},$ then R is Koszul. Furthermore, if $\mathcal {M}$ is a generic collection of m lines in $\mathbb {P}^n$ and R is the coordinate ring of $\mathcal {M}$ with m even and $m +1\leq n$ or m is odd and $m +2\leq n,$ then R is Koszul. Lastly, we show that if $\mathcal {M}$ is a generic collection of m lines such that
then R is not Koszul. We give a complete characterization of the Koszul property of the coordinate ring of a generic collection of lines for $n \leq 6$ or $m \leq 6$. We also determine the Castelnuovo–Mumford regularity of the coordinate ring for a generic collection of lines and the projective dimension of the coordinate ring of collection of lines in general linear position.
For a simple bipartite graph G, we give an upper bound for the regularity of powers of the edge ideal
$I(G)$
in terms of its vertex domination number. Consequently, we explicitly compute the regularity of powers of the edge ideal of a bipartite Kneser graph. Further, we compute the induced matching number of a bipartite Kneser graph.
We extend the theory of Koszul modules to the bi-graded case, and prove a vanishing theorem that allows us to show that the canonical ribbon conjecture of Bayer and Eisenbud holds over a field of characteristic $0$ or at least equal to the Clifford index. Our results confirm a conjecture of Eisenbud and Schreyer regarding the characteristics where the generic statement of Green's conjecture holds. They also recover and extend to positive characteristics the results of Voisin asserting that Green's conjecture holds for generic curves of each gonality.
It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.
In this short article, we will be principally investigating two classes of modules over any given group ring – the class of Gorenstein projectives and the class of Benson's cofibrants. We begin by studying various properties of these two classes and studying some of these properties comparatively against each other. There is a conjecture made by Fotini Dembegioti and Olympia Talelli that these two classes should coincide over the integral group ring for any group. We make this conjecture over group rings over commutative rings of finite global dimension and prove it for some classes of groups while also proving other related results involving the two classes of modules mentioned.
Let $L$ be a very ample line bundle on a projective scheme $X$ defined over an algebraically closed field $\Bbbk$ with ${\rm char}\,\Bbbk \neq 2$. We say that $(X,L)$ satisfies property $\mathsf {QR}(k)$ if the homogeneous ideal of the linearly normal embedding $X \subset {\mathbb {P}} H^{0} (X,L)$ can be generated by quadrics of rank less than or equal to $k$. Many classical varieties, such as Segre–Veronese embeddings, rational normal scrolls and curves of high degree, satisfy property $\mathsf {QR}(4)$. In this paper, we first prove that if ${\rm char}\,\Bbbk \neq 3$ then $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (d))$ satisfies property $\mathsf {QR}(3)$ for all $n \geqslant 1$ and $d \geqslant 2$. We also investigate the asymptotic behavior of property $\mathsf {QR}(3)$ for any projective scheme. Specifically, we prove that (i) if $X \subset {\mathbb {P}} H^{0} (X,L)$ is $m$-regular then $(X,L^{d} )$ satisfies property $\mathsf {QR}(3)$ for all $d \geqslant m$, and (ii) if $A$ is an ample line bundle on $X$ then $(X,A^{d} )$ satisfies property $\mathsf {QR}(3)$ for all sufficiently large even numbers $d$. These results provide affirmative evidence for the expectation that property $\mathsf {QR}(3)$ holds for all sufficiently ample line bundles on $X$, as in the cases of Green and Lazarsfeld's condition $\mathrm {N}_p$ and the Eisenbud–Koh–Stillman determininantal presentation in Eisenbud et al. [Determinantal equations for curves of high degree, Amer. J. Math. 110 (1988), 513–539]. Finally, when ${\rm char}\,\Bbbk = 3$ we prove that $({\mathbb {P}}^{n} , \mathcal {O}_{{\mathbb {P}}^{n}} (2))$ fails to satisfy property $\mathsf {QR}(3)$ for all $n \geqslant 3$.
In this short note, we confirm a conjecture of Vasconcelos which states that the Rees algebra of any Artinian almost complete intersection monomial ideal is almost Cohen–Macaulay.
We propose here a generalization of the problem addressed by the SHGH conjecture. The SHGH conjecture posits a solution to the question of how many conditions a general union $X$ of fat points imposes on the complete linear system of curves in $\mathbb{P}^{2}$ of fixed degree $d$, in terms of the occurrence of certain rational curves in the base locus of the linear subsystem defined by $X$. As a first step towards a new theory, we show that rational curves play a similar role in a special case of a generalized problem, which asks how many conditions are imposed by a general union of fat points on linear subsystems defined by imposed base points. Moreover, motivated by work of Di Gennaro, Ilardi and Vallès and of Faenzi and Vallès, we relate our results to the failure of a strong Lefschetz property, and we give a Lefschetz-like criterion for Terao’s conjecture on the freeness of line arrangements.
We study an operation, that we call lifting, creating nonisomorphic monomial curves from a single monomial curve. Our main result says that all but finitely many liftings of a monomial curve have Cohen–Macaulay tangent cones even if the tangent cone of the original curve is not Cohen–Macaulay. This implies that the Betti sequence of the tangent cone is eventually constant under this operation. Moreover, all liftings have Cohen–Macaulay tangent cones when the original monomial curve has a Cohen–Macaulay tangent cone. In this case, all the Betti sequences are just the Betti sequence of the original curve.
Let $k$ be a field and $R$ a standard graded $k$-algebra. We denote by $\operatorname{H}^{R}$ the homology algebra of the Koszul complex on a minimal set of generators of the irrelevant ideal of $R$. We discuss the relationship between the multiplicative structure of $\operatorname{H}^{R}$ and the property that $R$ is a Koszul algebra. More generally, we work in the setting of local rings and we show that certain conditions on the multiplicative structure of Koszul homology imply strong homological properties, such as existence of certain Golod homomorphisms, leading to explicit computations of Poincaré series. As an application, we show that the Poincaré series of all finitely generated modules over a stretched Cohen–Macaulay local ring are rational, sharing a common denominator.
Let $\unicode[STIX]{x1D709}$ be a stable Chern character on $\mathbb{P}^{1}\times \mathbb{P}^{1}$, and let $M(\unicode[STIX]{x1D709})$ be the moduli space of Gieseker semistable sheaves on $\mathbb{P}^{1}\times \mathbb{P}^{1}$ with Chern character $\unicode[STIX]{x1D709}$. In this paper, we provide an approach to computing the effective cone of $M(\unicode[STIX]{x1D709})$. We find Brill–Noether divisors spanning extremal rays of the effective cone using resolutions of the general elements of $M(\unicode[STIX]{x1D709})$ which are found using the machinery of exceptional bundles. We use this approach to provide many examples of extremal rays in these effective cones. In particular, we completely compute the effective cone of the first fifteen Hilbert schemes of points on $\mathbb{P}^{1}\times \mathbb{P}^{1}$.
In this work, we introduce a new set of invariants associated to the linear strands of a minimal free resolution of a $\mathbb{Z}$-graded ideal $I\subseteq R=\Bbbk [x_{1},\ldots ,x_{n}]$. We also prove that these invariants satisfy some properties analogous to those of Lyubeznik numbers of local rings. In particular, they satisfy a consecutiveness property that we prove first for the Lyubeznik table. For the case of squarefree monomial ideals, we get more insight into the relation between Lyubeznik numbers and the linear strands of their associated Alexander dual ideals. Finally, we prove that Lyubeznik numbers of Stanley–Reisner rings are not only an algebraic invariant but also a topological invariant, meaning that they depend on the homeomorphic class of the geometric realization of the associated simplicial complex and the characteristic of the base field.
This work concerns the linearity defect of a module $M$ over a Noetherian local ring $R$, introduced by Herzog and Iyengar in 2005, and denoted $\text{ld}_{R}M$. Roughly speaking, $\text{ld}_{R}M$ is the homological degree beyond which the minimal free resolution of $M$ is linear. It is proved that for any ideal $I$ in a regular local ring $R$ and for any finitely generated $R$-module $M$, each of the sequences $(\text{ld}_{R}(I^{n}M))_{n}$ and $(\text{ld}_{R}(M/I^{n}M))_{n}$ is eventually constant. The first statement follows from a more general result about the eventual constancy of the sequence $(\text{ld}_{R}C_{n})_{n}$ where $C$ is a finitely generated graded module over a standard graded algebra over $R$.
For every integer $k\geqslant 3$ we construct a $k$-gonal curve $C$ along with a very ample divisor of degree $2g+k-1$ (where $g$ is the genus of $C$) to which the vanishing statement from the Green–Lazarsfeld gonality conjecture does not apply.